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Abstract— Seamless loco-manipulation in unstructured en-
vironments requires robots to leverage autonomous explo-
ration alongside whole-body control for physical interaction.
In this work, we introduce HANDO (Hierarchical Autonomous
Navigation and Dexterous Omni-loco-manipulation), a two-
layer framework designed for legged robots equipped with
manipulators to perform human-centered mobile manipulation
tasks. The first layer utilizes a goal-conditioned autonomous
exploration policy to guide the robot to semantically specified
targets, such as a black office chair in a dynamic environ-
ment. The second layer employs a unified whole-body loco-
manipulation policy to coordinate the arm and legs for precise
interaction tasks—for example, handing a drink to a person
seated on the chair. We have conducted an initial deployment of
the navigation module, and will continue to pursue finer-grained
deployment of whole-body loco-manipulation. The video can be
found at (https://youtu.be/YDOgx3vRsfc).

I. INTRODUCTION

Last-mile delivery has emerged as a critical application for
service robots, in which these robotic systems must not only
traverse complex environments but also physically interact
with humans. Conventional delivery approaches often rely on
pre-built maps and precise localization [1]. While effective
in structured settings, these methods incur high costs for map
construction and limit scalability to customized or dynamic
environments. In parallel, last-mile delivery tasks inherently
require dexterous whole-body interaction-for instance, grasp-
ing a takeaway bag and handling it to a seated person,
which highlight the need to unify robust locomotion with
manipulation.

Dexterous omni-loco-manipulation with onboard manip-
ulators represents a natural platform for last-mile delivery.
Quadrupedal robots provide agile locomotion and the ability
to traverse uneven terrain [2], while the arm introduces
manipulation capabilities such as grasping, carrying and
handover. Compared to standalone manipulators, quaduped-
with-arm systems offer superior mobility and exploration;
compared to legged robots alone, they extend functionality
by enabling rich physical interactions with humans and
objects. This synergy positions legged mobile manipulators
as a powerful embodiment for complex delivery scenarios,
combining the flexibility of locomotion with dexterity of
manipulations.
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On the navigation side, most delivery strategies remain
map-based, relying on prior environmental models [1], which
struggle in frequently changing or rapidly deployed settings.
To address these limitations, recent works such as Navila [3],
FRTree planner [4], and Unigoal [5] investigate map-free
navigation, enabling robots to reason about and traverse
unknown spaces directly from sensory observations. While
these approaches advance the feasibility of zero-cost de-
ployment, significant opportunities remain to further improve
autonomous exploration and adaptability.

On the manipulation side, recent work emphasizes the
importance of whole-body coordination. Methods such as
UMI-on-Legs [6] and MLM [7] employ reinforcement learn-
ing (RL) and trajectory-driven policies to generate coordi-
nated arm-leg behaviors guided by end-effector trajectories.
Diffusion-based policies [8] further enhance flexibility by
learning trajectory distributions that are generalized among
tasks. Such approaches enable quadruped to perform loco-
manipulation tasks ranging from pushing to handover.

Compared to simulation, real-world deployment poses
significant hurdles. Perception gaps, terrain variability, and
hardware constraints limit zero-shot transfer. Moreover, de-
livery entails integrated autonomy that combines exploration
and execution: posing the challenge of enabling robots
to autonomously navigate unknown spaces, and then exe-
cute dexterous manipulator actions for human interaction.
Bridging these gaps demands a hierarchical yet integrated
framework that unifies map-free navigation with whole-body
loco-manipulation in a deployable system.

To address the above issues, we developed a two-
layer framework HANDO for last-mile delivery that en-
abled seamless coordination between navigation and loco-
manipulation controls. Our contributions are summarized as
follows:

« We propose a novel map-free navigation module, which
employs a vision-language model for cross-scene rea-
soning and graph matching to drive a three-stage ex-
ploration strategy, thereby enabling zero-cost navigation
without pre-built maps.

« We propose a loco-manipulation policy that fuses
quadruped locomotion and arm control, guided by end-
effector trajectories, to achieve whole-body interaction
behaviors such as grasping and handover.

o We integrate and validate the system on a real
quadruped-with-arm platform (see Fig. [T), demonstrat-
ing end-to-end last-mile delivery that combines seman-
tic navigation and whole-body interaction in human
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centered scenarios.

II. RELATED WORK
A. Autonomous Navigation

Navigation for delivery and service robots has tradi-
tionally relied on map-based methods such as SLAM and
graph-based planning [1], [9]. While effective in static and
structured settings, these approaches demand costly pre-
mapping and struggle in dynamic or customized environ-
ments. Recent advances have sought to eliminate explicit
maps by directly grounding navigation in perceptual inputs.
For example, UniGoal [5] introduces a goal-conditioned
exploration framework that leverages language and vision
cues to guide long-horizon navigation without map con-
struction. Similarly, vision-language navigation framework
such as NavilLa [3] demonstrate the potential of grounding
navigation in semantic goals specified by natural language.
These approaches significantly reduce deployment costs and
improve adaptability, but they remain limited when coupled
with manipulation, which is essential for last-mile delivery.

B. End-to-end Imitation learning

Imitation learning (IL) has achieved remarkable progress
in robotic manipulation, directly mapping raw sensory inputs
to robot actions from expert demonstrations. Architecture
such as ACT [10] employ transformer backbones with image
encoders to capture variability in human data, while Dif-
fusion Policy [8] introduces generative diffusion processes
to model multimodel action distributions. Extensions have
also explored 3D perception: Rise [11] leverages sparse point
cloud encoders for continuous control. However, while these
methods enrich sensory representations, they often neglect
explicit object-pose reasoning and introduce redundant infor-
mation, leading to increased computational complexity and
reduced generalization. Applying IL in mobile manipulation
thus requires better integration of spatial reasoning with
efficient whole-body control.

C. Loco-Manipulation

To endow legged robots with manipulation capabilities,
researchers have integrated quadruped mobility with robotic
arms. Early approaches employed optimization-based frame-
works for footstep planning and whole-body trajectory gen-
eration [6], [7], but these require task-specific design and
incur high computational costs. More recent work has shifted
toward reinforcement learning (RL) to achieve end-to-end
control across multiple loco-manipulation tasks. For instance,
[12] modeled arm motions as external torques for locomo-
tion compensation, while [13] proposed Regularized Online
Adaptation for sim-to-real transfer of whole-body control.
However, these methods often restrict manipulation to arm-
based coordinates, making them susceptible to body motion
disturbances. Recent frameworks such as MLM [7] com-
bine trajectory libraries and diffusion-policy-based reasoning
to enable vision-driven, task-space loco-manipulation. Yet,
challenges reamin in balancing performance across taks
and integrating automatic task execution, especially under
dynamic human-centered delivery scenarios.

ITI. GOAL-ORIENTED MAPLESS NAVIGATION
A. Navigation Policy

To achieve adaptive navigation without pre-built maps, we
design a goal-oriented mapless navigation policy inspired by
UniGoal [5]. The central idea is to guide the quadruped robot
toward a semantic goal without relying on explicit maps or
localization, but instead leveraging goal-image matching and
reasoning from a vision-language model (VLM). Our method
follows a three-stage exploration process as shown in Fig.

Stage 1: Initial Exploration. The robot starts by scanning
the environment using onboard RGB-D sensing and builds
an incremental scene graph. When the matching score with
the goal graph is below a threshold oy, i.e.,

s < 01, (])

the system decomposes the semantic goal graph G, into sub-
goals and employs frontier-based exploration, guided by a
VLM, to cover unexplored areas.

Stage 2: Coordinate Projection and Alignment. Once
partial matching is achieved, i.e.,

o1 < s < 09, )

the goal graph G, and current scene graph G, are aligned.
Stage 3: Goal Verification. When the matching score
exceeds 02, i.e.,
5y 2 O, (3)

the policy performs goal verification and scene graph cor-
rection to finalize navigation.

Action Generation. At Stage 2 and Stage 3, a VLM-
based action decoder selects a discrete action a; €
{move forward,turn left,turn right,stop} by
maximizing the expected improvement of the matching
score. These actions are mapped into continuous velocity
commands: (0.1 ms~!', w/12rad s~!, —x/12 rad s, O)
The continuous actions are then executed by the low-level
legged locomotion controller.

IV. LoCO-MANIPULATION POLICY

This part is a proposed design, and we are currently build-
ing a whole-body control simulation platform and collecting
real-world data. In the future, the loco-manipulation module
within the framework will be gradually implemented and
refined.

We address the challenge of last-mile delivery using a
legged robot equipped with an onboard arm, which must per-
form integrated locomotion and manipulation to hand over or
receive parcels from humans in unstructured environments.
To improve human-robot motion compatibility, we propose
a whole-body controller that is directly conditioned on real-
time human hand trajectories. Our method has two modules:
a Hand-Track Trajectory Generator that converts human-
hand observations into a smooth end-effector target trajec-
tory, and a Whole-Body Loco-Manipulation Policy outputs
joint-space actions for legs and arm under a unified control

policy.



Layer1: Goal-oriented mapless navigation
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Fig. 1.

Overview of HANDO. The two-layer framework couples mapless navigation (Layer 1) with whole-body loco-manipulation (Layer 2), where

navigation outputs velocity/joint commands and manipulation uses hand-track with diffusion policy to generate coordinated grasping and handover.

A. Hand-Track Trajectory Generator

We detect the operator’s hand, select keyframes by hand-
speed troughs, and attach visual prompts to disambiguate
spatial relations before VLM reasoning to produce coarse
sub-goals [14].

Given the keyframes {I;}X | and their hand poses {h}
in the camera frame, we compute a calibrated world-frame
sequence itf[} by retargeting hand positions/orientations to
the robot gripper’s tool-center-point (TCP) with a fixed
transform “PTy,nq:

X;Cp = SE(3) (Tcam%world)' SE(3) (ht) : tcpThand' (4)

At deployment, the generator runs in two modes: online
from live hand tracking during human-robot handover, or
offline from pre-recorded human demonstration videos.

B. Whole-Body Loco-Manipulation Policy

We formulate the problem as a Partially Observable
Markov Decision Process (POMDP) and learn a policy 7g
that outputs joint position offsets for both the legs and

the arm. The policy is trained with PPO to maximize the
expected discounted return: Bz ) [ X, ¥'ri].

State Space: The state for the policy includes the last
action, leg state, arm state, base state and end-effector tra-
jectory. Specifically, the leg state includes the joint positions
q/ € R'?, joint velocities ¢/ € R'2, the gravity vector g, € R?
and the previous action af_ 1 € R!2. The arm state includes
the joint positions q¢ € R'2, joint velocities ¢ € R!? and
the previous action a? | € R®. The base state includes the
body angular velocity @’ € R? and the body linear velocity
v? € R3. The end-effector trajectory is represented through a

3D position vector and a 6D rotation representation.

Action Space: We use position PD control with target
q = q®™! 1 Aq,, consistent with the whole-body joint-
space actuation.

Rewards: The primary goal is TCP tracking in position
and orientation:

A7)
A(str7)

cp _ _tar
Ttrack = exp(— e “—pill Gpp‘ ”) ~ exp( - ) (5)



We add regularizers for smoothness and hardware safety:
Freg = — o | T |1* = Aagllar — a1 1P = Aglliie*, (6)

and optionally incorporate a locomotion style prior to sta-
bilize gaits during manipulation [7]. The total reward is
Tt = T'track T Treg + Fstyle-

Policy architecture: We adopt a lightweight MLP actor-
critic with a memory of recent proprioception. PPO is
used for optimization. To improve sim-to-real, the standard
domain randomization is used on PD gains, link masses,
ground friction, and observation latency.

V. EXPERIMENTS AND RESULTS
A. Experimental setup

For hardware integration, we assembled a quadruped-
manipulator platform consisting of a Unitree Gol EDU robot
and a AGILEX PIPER lightweight arm. The computation
is provided by an NVIDIA RTX 4090 GPU, which enables
multi-threaded control for real-time operation. Both the loco-
motion policy and the whole-body loco-manipulation policy
run at 50Hz, ensuring repinsive execution of leg and arm
actions. The generated joint trajectories are transmitted from
the computer to the robot actuators via a wired Ethernet
connection, supporting low-latency and reliable deployment
in physical environments.

B. Real-world Experiments

The real-world evaluation was conducted in a café with
an unstructured layout of irregularly arranged tables, chairs,
and miscellaneous objects. In each trial, the robot started
from a randomized initial position and was tasked with
autonomously approaching a designated human recipient.
The setting was partially observable: the robot had no prior
knowledge of the target location and relied solely on visual
input and semantic commands.

The goal-directed, mapless navigation layer consistently
explored the environment and approached the target using
only visual cues. Recorded base trajectories were smooth and
continuous, indicating stable and robust navigation despite
layout irregularities. Illustrative examples of the scene and
the resulting navigation paths are provided in Fig. [2]

VI. CONCLUSION AND FUTURE WORK

In this work, we present HANDO, a hierarchical frame-
work for autonomous navigation and dexterous loco-
manipulation, designed to enable legged mobile manipulators
to perform complex last-mile delivery tasks in unstructured
and human-populated environments. HANDO combines a
high-level goal-conditioned exploration policy for map-free
navigation with a unified whole-body policy for coordinating
locomotion and manipulation, thereby bridging semantic task
understanding with low-level physical control.

Beyond navigation, we will continue to elaborate on
finer-grained training and deployment of whole-body loco-
manipulation, with an emphasis on coordinated grasp-and-
handover between the quadruped base and a manipulator.
In particular, we plan to integrate real-time hand tracking,
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Fig. 2. Snapshots of real-world experiments.The task required the robot
to deliver a beverage and handle to a seated human.

enabling the robot to dynamically align its manipulator with
the human hand during object transfer, thereby enhancing
the safety, robustness, and naturalness of human-robot inter-
action in complex real-world settings.
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