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Abstract— This paper describes work on multi-robot pattern
formation. Arbitrary target patterns are represented with an
optimal robot deployment, using a method that is independent
of the number of robots. Furthermore, the trajectories are
visually appealing in the sense of being smooth, oscillation
free, and showing fast convergence. A distributed controller
guarantees collision free trajectories while taking into account
the kinematics of differentially driven robots. Experimental
results are provided for a representative set of patterns, for
a swarm of up to ten physical robots, and for fifty virtual
robots in simulation.

I. INTRODUCTION

In the last decade robotic pattern formation and formation
control has experienced a rise of attention along with the
advances in multi-robot systems. The applications of pattern
formation are broad, and include multi-robot navigation tasks
for exploration, escorting and rescue missions, alignment
of aerial vehicles, or cooperative control of mobile sensor
networks to maintain surveillance or coverage.

The pattern formation task involves the assignment of
robots to goal positions that define the final pattern, but also
the control of the robots to actually establish the formation.
Typical work on pattern formation in robotics like [1] focuses
on the positioning of the robots in a specified pattern and
measures against the accuracy of the patterns achieved, as
the main goal is the final robot formation, which often is the
basis to accomplish another task.

In contrast, in this work focus is put on the pattern
formation as such. The aim is to generate both visually
convincing final formations by optimizing the robots’ goal
positions, as well as simple and smooth robot motions at the
transitions of patterns. Although visual appeal is not directly
encoded in our method, the different algorithms of this work
were selected with the clear aim for visual appeal.

A recent survey [2] describes the challenges of robotic
pattern formation in detail. Many of the identified challenges,
such as pattern transformation, collision avoidance, scalabi-
lity of patterns or formation of multiple patterns are covered
by our work and will be presented in the following sections.

The presented method first generates uniform sets of goal
positions from input pattern templates by Voronoi partition-
ing. Thus an accurate representation of the final patterns
is provided. Then the robots are driven towards the goal
positions in an iterative process, by first performing a multi-
robot goal assignment based on the Hungarian algorithm [3]
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to coordinate the robots, which leads to short paths and fast
convergence of the robots to the goal. Finally, the robots
smoothly avoid collisions using the distributed collision
avoidance method presented in [4]. This two last steps are
repeated until convergence.

We demonstrate our approach in experiments with up
to ten differentially-driven robots and in simulations with
fifty robots. The presented multi-robot system is capable
of creating multi-pattern formations as well as transitions
between arbitrary patterns, involving filling and non-filling
patterns likewise. Further, reconfiguration of patterns is
achieved in real time without need for costly preprocessing
and robots recover from failures and adapt to changes in
patterns reliably.

Similar to our goal assignment approach, the Hungarian
algorithm was implemented for shape-reconfiguration in [6]
among others. In [7] a scalable and distributed algorithm
for shape transformation based on median consensus was
presented and showed a performance close to that of the
optimal assignment by the Hungarian algorithm.

Methods such as [8] represent an efficient way to control
the overall shape of a robot team by global parameters, where
the positions of the individual robots in the formation are not
explicitly controlled. Patterns can also be created by applying
a potential or force field. A method based on generalized
social potential fields is presented in [9] that directs the
robots to the goal positions on collision-free but relatively
jagged paths which might get trapped in local minima.

The work in [10] presents a solution to the coverage
problem by partitioning the area with a Voronoi diagram.
The shape of the Voronoi regions and thus the positions of
the robots are controlled through a density function over the
environment, which results in a limited set of simple uniform
robot patterns.

Other decentralized approaches, such as the gradual pat-
tern formation presented in [11], investigate pattern forma-
tion under the local information provided by the robots’
sensors. Due to the lack of global knowledge, optimal
choreographic motions cannot be achieved.

Furthermore, related work to pattern formation extends
beyond the field of robotics to animation and computer
graphics, where the motion coordination of large groups
of agents is studied. The concept of spectral transforma-
tions is introduced in [12] to sequentially achieve smooth
trajectories and collision avoidance. The approach produces
visually appealing motions and the interpolation paths are
controllable, but collision avoidance is not taken into account
at the planning stage. Moreover, the method seems to require
substantial manual tuning.
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The remainder of the paper is structured as follows.
Section II states the problem and gives an overview of
the presented approach to pattern formation. Section III
describes the goal generation for representation of the final
pattern, whereas Section IV presents the control. In Sec-
tion V simulations and experiments are discussed. Finally,
Section VI concludes and gives an outlook on our future
work.

II. PROBLEM DEFINITION AND OVERVIEW

Given m non-intersecting patterns {P1, . . . , Pm} and n
robots {R1, . . . , Rn} of radius {r1, . . . , rn}, two comple-
mentary problems arise: first, to obtain the best possible
distribution of the n robots over the m patterns so that in their
final positions the patterns are optimally represented; second,
to guarantee visually appealing motions of the robots and fast
convergence, both for holonomic and non-holonomic robots.

The solution here presented consists of two main steps,
each one solving one of the aforementioned problems.

First, a set of n goal positions is computed. The goal
positions represent the patterns and are independent of the
initial positions of the robots. This initial computation is
equivalent to a coverage method and can be computed off-
line if the pattern is known a priori. The result of this step is
a set of

∑m
l=1 nl = n goal positions, where nl goal positions

represent pattern Pl.
Second, robots are driven towards the set of goals by a

real-time controller. This iterative controller is subdivided
into three parts: first the robots are optimally and uniquely
assigned to goal positions, second each robot computes a
preferred velocity towards its goal independently of the other
robots, third each robot chooses a collision free velocity
close to its preferred velocity, taking the current positions
and velocities of its neighbors into account, and moves
according to this computed velocity. Visual appeal in the
trajectories is obtained thanks to the optimal goal assignment
and reciprocal collision avoidance which avoids oscillations
and produces smooth trajectories.

III. GOAL GENERATION

Given m patterns, the objective is to find the positions of
n samples which optimally represent them. The samples are
spread over the patterns according to their relative area. The
ratios a(P1) : a(P2) : · · · : a(Pm) are kept close to n1 : n2 :
· · · : nm, with

∑m
l=1 nl = n and a(Pl) the area of pattern

Pl. Therefore, the problem is reformulated as optimizing the
positioning of a set of nl particles representative for each
pattern Pl. This is equivalent to a coverage problem, as stated
in [10], where a cost function given by

nl∑
j=1

∫
W l
j

||q− qlj ||ρl(q)dq (1)

is to be minimized. The set {W l
j}j∈[1,nl] is a partition of

the convex region P̂l that entirely encloses Pl, qlj are the
positions of the particles, i.e. the generators of the partition
and ρl(q) a mass density function which takes high values in

Pl and decreases towards zero outside. Note that an enclosing
convex region P̂l is needed for computation of the partition,
but the pattern itself Pl can be of arbitrary shape. The Lloyd
algorithm presented in [10] guarantees convergence of the
final particle configuration to a local minimum.

Fig. 1 demonstrates the process. The algorithm is initial-
ized to nl particles uniformly sampled within the pattern
Pl. In each step the optimal partition given by the current
samples is computed. This is the Voronoi tessellation,

V lj = {q ∈ P̂l | ||q− qlj || ≤ ||q− qls||, ∀s ∈ [1, nl], s 6= j}.
(2)

The position of each particle qlj is updated to its optimal
placement, the centroid of its cell,

CV lj =

∫
V lj

qρl(q)dq∫
V lj
ρl(q)dq

. (3)

Due to the proximity between initial and final positions of
the samples the iterative optimization quickly converges to
a local minimum of the coverage function (1), which in
general is a good representation of the pattern. Implemen-
tation of the Lloyd algorithm can be either distributed or
centralized. For each pattern, the centralized optimization
presents O(nl log nl) overall time complexity of one step
of the computation and a good distribution can be obtained
in ten to twenty iterations if the start positions are sampled
from a uniform distribution [13].

Let us call Gl the set of nl particles that optimally
represents pattern Pl and has been obtained through the
presented Voronoi coverage optimization. Finally, the set of
goals G is formed by the union G =

⋃m
l=1Gl. Fig. 1 shows

the initial and final position of the particles for representing
a triangle.

IV. CONTROL

In order to achieve fast convergence and smooth trajecto-
ries, a simple real-time control is proposed. In each iteration,
each agent Ri is uniquely assigned to a goal position gj ∈ G,
computes a preferred velocity independently of the other
agents and modifies it to avoid collisions with its neighbors.

A. Goal assignment

In each iteration the first step is to find a bijection between
the n agents and the n goal positions which minimizes a cost

Fig. 1. Left: Initial samples for representing a triangle and Voronoi
tessellation. Right: Final position of the samples after convergence and their
Voronoi tessellation.
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function, here given by the sum of squared distances to the
goal

σkGA = argmin
σk

n∑
i=1

||gσk(i) − pki ||2, (4)

where k is the iteration index, σk the assignment function, pki
the position of robot Ri at iteration k and gσk(i) its assigned
goal.

The centralized Hungarian algorithm for optimally solving
the goal assignment problem with cost O(n4) was given by
Kuhn and Munkres [3] and later improved by Edmonds and
Karp to cost O(n3) [14]. In [16] a distributed task assignment
method with market based coordination is presented, which
finds a sub-optimal solution in a maximum of n(n + 1)/2
iterations for each robot. In our present simulations and ex-
periments a centralized version of the Hungarian algorithm is
used, thus the optimal assignment is found. This computation
becomes prohibitive for groups of robots larger than the ones
used in the experiments and simulations. In that case, a sub-
optimal goal assignment should be computed. Moreover, due
to the low number of reassignments observed throughout
iterations, this layer could run at a lower rate in a parallelized
approach.

B. Preferred velocity

Each robot Ri selects a preferred velocity vkprefi towards
its assigned goal without taking into account the other robots.
This velocity is given by a simple proportional controller

vkprefi = Vp min

(
1,
||gσkGA(i) − pki ||

Ka

)
gσkGA(i) − pki
||gσkGA(i) − pki ||

,

(5)
where the constant Vp > 0 is the preferred speed of the robot
and is chosen slightly lower than the maximum speed. This
is in order to successfully avoid collisions by speeding-up if
needed. The constant Ka > 0 is the distance to the goal from
which the preferred velocity is reduced linearly. In order to
guarantee convergence without oscillations Ka must verify
Ka ≥ Vp∆t, where ∆t is the time step of the controller.
Note that the non-holonomicity of the robots is taken into
account in the local collision avoidance.

C. Local collision avoidance

For each robot, given a preferred velocity vkprefi and the
current velocities and positions of its neighbors, a collision
free velocity vkcfi and appropriate controls are computed.
In order to avoid collisions while guaranteeing visually
appealing motions local reciprocal collision avoidance is
implemented. The method is based on Velocity Obstacles
[17] in velocity space and exploits the fact that all con-
trolled robots in the environment react following the same
scheme. For holonomic robots refer to [18]. The kinematic
constraints of non-holonomic robots are taken into account
in NH-ORCA [4], which is the chosen method here shortly
described.

Assume a differential-drive robot with constraints in its
linear and angular velocities given by |v| ≤ vmax −

|ω| lw2 and |ω| ≤ ωmax,where lw is the inter-wheel distance
and vmax and ωmax the maximum linear and angular speeds.
Further consider a set of basic trajectories described by two
segments, the first segment at v and ω constant and the
second one starting at a fixed time To ≥ ∆t, at constant
v and ω = 0.

Given a holonomic robot with constant velocity vH , its
trajectory can be tracked by a non-holonomic robot moving
along a trajectory subject to the aforementioned constraints
in speed and path, within a certain tracking error. The set
SAHVi now defines the velocities that can be tracked by robot
Ri within an error below a fixed upper limit εmax ≥ 0, and
PAHVi is its polygonal approximation. In [4] the closed form
of SAHVi was presented.

The set of collision-free velocities ORCAτi for robot Ri
with horizon τ is given by

ORCAτi = PAHVi ∩
n⋂

j=1,j 6=i

ORCAτi|j , (6)

where ORCAτi|j is the set of collision-free velocities for
horizon τ , and a holonomic robot at position pki and radius
ri + εmax with respect to a holonomic robot at position
pkj , radius rj + εmax and velocity vk−1cfj

. As shown in [18],
ORCAτi|j is given by the half plane in velocity space com-
puted geometrically from the generated Velocity Obstacle.
Finally, vkcfi is selected as

vkcfi = argmin
v∈ORCAτi

‖v− vkprefi‖. (7)

An example with five robots is presented in Fig. 2.
Then feasible controls (vki , ω

k
i ) are chosen for robot Ri,

which minimize the tracking error of vkcfi while following the
aforementioned basic trajectories. The mapping between vcf
and (v, ω) was given in closed form in [4]. Moreover, εmax is
dynamically decreased to guarantee ri+rj+2εmax ≤ ||pki −
pkj ||. In addition, for crowded scenarios the time horizon can
be optimized in each step by solving a 3D optimization [18],
algorithm that runs in O(ni) expected time for each robot
Ri, where ni is the number of neighboring robots.

The result is an algorithm that guarantees collision-free
trajectories for non-holonomic robots even in highly crowded
environments. The collision avoidance layer can be fully par-

Fig. 2. NH-ORCA optimization in velocity space for a differentially driven
robot in a scenario with five robots.
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Fig. 3. Multi-robot pattern formation. Top row, left to right: seven robots starting from random positions transition to form sequentially a circle, two
lines and a ring, which follows in Fig. 4; intermediate and final frames are displayed. Middle row: Identical transformation with ten robots. Bottom row:
Identical transformations with fifty simulated robots. The target patterns are displayed in the background at the bottom row.

allelized and information exchange is limited to knowledge
of size, position and velocity of the robots’ neighbors.

V. SIMULATION AND EXPERIMENTS

The pattern formation and control methods presented in
this paper are tested both in experiments with real robots
and in simulation. For the experiments a representative set of
patterns is chosen, which is composed of polygonal convex
and non-convex patterns, line patterns, filled patterns and
patterns with hole, and formations with multiple patterns at
a time. The chosen patterns are a circle, two lines, a ring, a
triangle and three stars.

These patterns are visible as the background shapes in the
bottom rows of Figs. 3 and 4. We show the representation of
these patterns using four, seven and ten physical robots, and
fifty simulated robots. We also show that trajectories present
fast convergence, are smooth and exempt of undesired oscil-
lations, thus they are visually pleasing.

A. Setup for pattern formation

The arena consists of a white 1.5 m x 1.5 m flat area
on which the robots operate. An overhead camera tracks
them through unique infrared LED codes. Communication
to a centralized computing unit is realized via generic radio
receivers at 10 Hz. In the following experiments we employ
a maximum number of ten modified e-pucks [5], which are
small disk-shaped differentially-driven robots. Furthermore,
each robot is equipped with an array of 3 x 3 RGB color
LEDs to portray a desired pattern. In Table I the relevant
parameters of the modified e-puck are given, together with
the NH-ORCA collision avoidance constants. Note that εmax
is decreased when robots are extremely close and horizon

τ might be decreased to guarantee feasibility of the opti-
mization, as described in Section IV. The simulations are
carried out identically to the physical experiments, except
that the tracking part is omitted and the vehicle kinematics
are simulated by adding a similar amount of actuation noise
as found in the real system. Note that noise is almost
negligible in this setup.

B. Experimental results

Three runs of experiments are presented where the number
of robots is increased; four, seven and ten robots are used.
In all runs the robots are placed randomly on the arena and
sequentially move from one pattern formation to the other.
The intermediate and final frames for seven and ten robots
are displayed starting in Fig. 3 and continuing in Fig. 4. In
the top row of Fig. 3 and from left to right, seven robots
start from random positions to form sequentially a circle,
two lines and a ring, which follows in Fig. 4. In the middle

TABLE I
PARAMETERS OF AN E-PUCK ROBOT AND NH-ORCA CONSTANTS

Symbol Value Units Description
lw 0.0525 m Distance between wheels
dw 0.041 m Diameter of the wheels
dA 0.09 m Maximum diameter of the robot
vmax 0.13 m/s Maximum linear speed
ωmax 4.96 rad/s Maximum angular speed
εmax 0.01 m Maximum tracking error
τ 2 s Time to collision horizon
To 0.35 s Time to achieve orientation
Vp 0.12 m/s Preferred speed
Ka 0.1 m Linear speed reduction distance
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Fig. 4. Multi-robot pattern formation (cont’d from Fig. 3). Top row, left to right: seven robots after achieving a ring pattern transition to form sequentially
a triangle and three stars; intermediate and final frames are displayed. Middle row: Identical transformation with ten robots. Bottom row: Identical
transformations with fifty simulated robots. The target patterns are displayed in the background at the bottom row.

row identical transformations with ten robots are displayed.
The target patterns are displayed in the background at the
bottom row. The sequences continue in Fig. 4, where after
achieving a ring pattern, the robots first form a triangle and
then three stars. Each sequence, from the first to the last
pattern, has a duration of approximately 20 seconds and
shows that the robots display the pattern optimally in their
final positions. Even for low numbers of robots the method is
able to represent a target pattern closely, although the visual
effect is clearly affected by the low resolution, as can be seen
from Fig. 5 where only four robots represent the patterns.

In Fig. 6 the trajectories for several pattern transformations
are depicted, where each line represents the path of a robot,
with the light blue stars the start positions and the black
circles the end positions. The presented transformations are
ordered from left to right: ten robots from two lines to
ring, fifty simulated robots from two lines to ring and from
ring to triangle. Smooth and oscillation-free trajectories are
obtained. Collisions are fully avoided while keeping elegant
motions. A video that shows the conducted experiments in
full length and real speed accompanies the paper.

C. Simulation results

In simulation the number of robots is increased to fifty
and the same sequence of patterns described in Section V-B
is simulated. The intermediate and final frames are displayed
starting in the bottom row of Fig. 3 and continuing in the
bottom row of Fig. 4. The target patterns are displayed in
the background of the images. As expected, increasing the
number of robots improves the quality of the representation.
This sequence is included in the accompanying video in full
length and at double speed.

D. Recovery from perturbations

Thanks to the goal assignment performed in each iteration,
the system adapts to major perturbations in the position of the
robots by redistributing them to reform the pattern quickly.
In Fig. 7 the recovery from a perturbation (top-right) is
shown. Note that initial (top-left) and final (bottom-right)
distributions are identical, although the robots have been
redistributed. This experiment is presented in full length and
real speed in the accompanying video.

VI. CONCLUSION AND FUTURE WORK

In this work a multi-robot control method for pattern for-
mation is presented and tested in experiments and simulation.
First, optimal final formations are achieved independently of
the number of robots. Nevertheless, the minimum number of
robots needed for obtaining a visually pleasant representation
depends on the given pattern and remains difficult to specify
in general. To obtain the final positions the Voronoi coverage
method is applied before the robots start moving. This
computation can be distributed. Second, visually appealing
trajectories (oscillation-free, smooth and of similar length
for all robots) are obtained with fast convergence to the
final formation from any start conditions. To achieve this,
a real-time controller is implemented. The goal assignment
step is implemented in a centralized scheme, but existing
distributed algorithms could be utilized instead; the local
collision avoidance is inherently distributed. Fast computa-
tion of the goal positions and fast convergence to the final
pattern was achieved in all of our experiments, where no
failure was detected. Furthermore, motions are guaranteed to
be collision-free for the case of multiple differentially-driven
robots.

4516



Fig. 5. Five patterns represented with only four robots. Left to right: circle, two lines, ring, triangle, three stars. Even with very low resolution patterns
are noticeable

Fig. 6. Left: Trajectories for ten robots from two lines to ring. Middle: Trajectories for fifty robots (simulation) from two lines to ring. Right: Trajectories
for fifty robots (simulation) from ring to triangle. Start and final positions are represented with light blue stars and black circles respectively.

The system in this paper provides a platform for several
future investigations, including the handling of static and
dynamic obstacles, as well as dynamic patterns.

REFERENCES

[1] G. Antonelli, F. Arrichiello and S. Chiaverini, ”The entrap-
ment/escorting mission: An experimental study using a multirobot
system”, in IEEE Robotics and Automation Magazine, vol. 15, no.
1, pp. 22-29, 2008.

[2] B. Varghese and G. McKee, ”Towards a Unifying Framework for
Pattern Transformation in Swarm Systems”, in Proc. of the AIP
Conference, vol. 1107, no. 1, pp. 65–70, 2009.

[3] H. W. Kuhn, ”The hungarian method for the assignment problem”, in
Naval Research Logistics, vol. 2, no. 1, pp. 83–97, 1955.

[4] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, R. Sieg-
wart, ”Optimal Reciprocal Collision Avoidance for Multiple Non-
Holonomic Robots”, in Proc. Int. Symp. on Distributed Autonomous
Robotics Systems, 2010.

Fig. 7. Perturbation recovery with ten robots displaying a circle. Between
frames A and B the positions of some robots are manually modified.

[5] F. Mondada, M. Bonani, X. Raemy, J. Pugh,C. Cianci, A. Klaptocz, S.
Magnenat, J.-C. Zufferey, D. Floreano and A. Martinoli, ”The e-puck,
a Robot Designed for Education in Engineering”, inConf. Aut. Rob.
Syst. Compet., pp. 59–65, 2009.

[6] S. Yun, D.A. Hjelle, E. Schweikardt, H. Lipson and D. Rus, ”Planning
the Reconfiguration of Grounded Truss Structures with Truss Climbing
Robots that Carry Truss Elements”, in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2009.

[7] R. Ravichandran, G. Gordon and S. C. Goldstein. ”A scalable dis-
tributed algorithm for shape transformation in multi-robot systems”,
in Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems,
2007.

[8] C. Belta and V. Kumar, ”Abstraction and control for groups of robots”,
in IEEE Transactions on Robotics, vol. 20, no. 5, pp. 865-875, 2004.

[9] R. Gayle, W. Moss, M. C. Lin and D Manocha, ”Multi-robot coordi-
nation using generalized social potential fields”, in Proc. of the IEEE
Int. Conf. on Robotics and Automation, 2009.

[10] F. Bullo, J. Cortés and S. Martı́nez, ”Distributed Control of Robotic
Networks”, Princeton University Press, 2009.

[11] Y. Ikemoto, Y. Hasegawa, T. Fukuda and K. Matsuda, ”Gradual spatial
pattern formation of homogeneous robot group”, in Inf. Sci. Inf.
Comput. Sci., vol. 171, no. 4, pp. 431-445, 2005.

[12] S. Takahashi, K. Yoshida, T. Kwon, K. Hoon Lee, J. Lee and S. Y.
Shin, ”Spectral-based group formation control”, in Computer Graphics
Forum, 2009.

[13] O. Deussen, S. Hiller, C. van Overveld and T. Strothotte, ”Floating
Points: A Method for Computing Stipple Drawings”, in Computer
Graphics Forum, vol. 19, pp. 40–51, 2000.

[14] J. Edmonds and R. M. Karp, ”Theoretical Improvements in Algorith-
mic Efficiency for Network Flow Problems”, in Journal of the ACM,
vol. 19, no. 2, pp. 248–264, 1972.

[15] L. Liu and D. A. Shell, ”Assessing Optimal Assignment under Un-
certainty: An Interval-based Algorithm”, in Proc. of Robotics: Science
and Systems, 2010.

[16] N. Michael, M. M. Zavlanos, V. Kumar and G. J. Pappas, ”Distributed
multi-robot task assignment and formation control”, in Proc. of the
IEEE Int. Conf. on Robotics and Automation, pp. 128–133, 2008.

[17] P. Fiorini and Z. Shiller, ”Motion planning in dynamic environments
using Velocity Obstacles”, in Int. Journal of Robotics Research, vol.
17, no. 7, pp. 760-772, 1998.

[18] J. van den Berg, S. J. Guy, M. Lin and D. Manocha, ”Reciprocal n-
body Collision Avoidance”, in Int. Symp. on Robotics Research, 2009.

4517


