
Collision Avoidance for Multiple Agents with Joint Utility Maximization

Javier Alonso-Mora1,2, Martin Rufli1, Roland Siegwart1 and Paul Beardsley2

Abstract— In this paper a centralized method for collision
avoidance among multiple agents is presented. It builds on the
velocity obstacle (VO) concept and its extensions to arbitrary
kino-dynamics and is applicable to heterogeneous groups of
agents (with respect to size, kino-dynamics and aggressiveness)
moving in 2D and 3D spaces. In addition, both static and
dynamic obstacles can be considered in the framework.

The method maximizes a joint utility function and is formu-
lated as a mixed-integer quadratic program, where online com-
putation can be achieved as a trade-off with solution optimality.
In experiments with groups of two to 50 agents the benefits
of the joint utility optimization are shown. By construction,
it’s suboptimal variant is at least as good as comparable
decentralized methods, while retaining online capability for
small groups of agents. In its optimal variant, the proposed
algorithm can provide a benchmark for distributed collision
avoidance methods, in particular for those based on the VO
concept that take interaction into account.

I. INTRODUCTION

The computation of global collision-free trajectories in
a multi-robot setting remains challenging. Consequently,
the overall problem is typically hierarchically decomposed
into a global planning part (which may not consider robot
constraints, nor interaction properties), and a local reactive
component, which handles these unmodeled effects.

In this paper we explore this latter element from a cen-
tralized perspective in search for optimality and present a
novel collision avoidance method for multiple agents. The
method is based on the velocity obstacle (VO) paradigm
and operates by maximizing a joint utility function. It shares
similarities with the method presented in [1] but is not limited
to the case of two agents. While centralization restricts the
method’s applicability to systems that are controlled from a
single unit, many of the current multi-robot frameworks –
such as the display presented in [2] – are operated in such
a manner. Furthermore, the method does not require that all
objects are under the control of the central unit, as both static
obstacles and not-controlled agents can be seamlessly taken
into account.

In addition, the proposed algorithm may serve as a
benchmark for distributed, VO-based collision avoidance
methods, such as [3] and [4]. In the aforementioned recip-
rocal methods, the space of feasible motions is significantly
reduced in order to attain collision avoidance guarantees in
the distributed case. This can be avoided via a centralized
optimization, such as the one presented here. Furthermore,

1 J. Alonso-Mora, M. Rufli and R. Siegwart are with the
Autonomous Systems Lab, ETH Zurich, 8092 Zurich, Switzerland
{jalonso,ruflim,rsiegwart}@ethz.ch

2 J. Alonso-Mora, P. Beardsley are with Disney Research Zurich, 8092
Zurich, Switzerland {jalonso,pab}@disneyresearch.com

the formulation presented in this work retains the properties
of [4] which applies to heterogeneous groups of agents and
respects their individual kino-dynamic properties.

The presented method formulates the joint optimization
as a (mixed-integer) quadratic program (QP/MIQP), where
online computation is achieved as a trade-off with optimality.
While the MIQP formulation allows to compute truly opti-
mal solutions, the QP formulation remains sub-optimal but
enables online performance for very large groups of robots.
Nonetheless, the QP formulation at all times dominates the
distributed methods’ solution set.

Related to our approach, centralized MIQP [5] and QP [6]
optimizations have recently been developed to compute
collision-free trajectories for groups of quad-rotor heli-
copters. In contrast to our formulation, these methods op-
timize intermediate states to reach a final destination and
are therefore costly optimizations ideal for off-line trajectory
generation. Instead, our method achieves online performance
for collision avoidance by computing collision-free inputs in
each time step, and can be combined with the distributed
reciprocal collision avoidance method presented in [7] for
aerial vehicles.

Besides the described main contributions, several im-
provements to the existing reciprocal collision avoidance
framework are proposed. These include the use of repulsive
forces to maintain a minimum inter-agent distance (in III-
C), the use of per-agent weights to handle individual robots’
aggressiveness (in V-A) and the use of an asymmetric cost
function which penalizes an agent’s changes in speed dif-
ferently from changes in orientation (in V-A). Furthermore,
the method is able to model avoidance preference on one
side (in VI-A), which is a standard rule in our society.

For clarity of exposition, the method is described for kino-
dynamically constrained agents moving in 2D Euclidean
space. Nevertheless, it readily applies to agents moving in
3D Euclidean space – see Section VIII-C. The remainder
of this paper is structured as follows. Sections II and III
introduce the system and the basic concepts. Section IV
formalizes the joint optimization, whereas Sections V and VI
describe the optimization formulated as a low complexity QP
and an optimal MIQP, respectively. In Section VII formal
properties are given and in Section VIII extensions are
discussed. Experimental results are presented in Section IX
and Section X concludes the paper.

Throughout this paper scalars x are set in lower case
italics, vectors x in lower case bold and matrices X in
uppercase italics. The sub-index i indicates agent identity,
whilst super-index k indicates the time-step of the collision-
avoidance control-loop.

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5643-5/13/$31.00 ©2013 IEEE 2833

Fig. 1. Left: Reference control obstacle and its approximation by three half-planes (3). Middle / right: Tracking errors ε in [m] for sampled reference
velocities u (axis: ux, uy [m]), saturated at 5m and for the kino-dynamics of the vehicle used in the experiments. For details we refer to [4]. The initial
velocity and steering angle are −4 m/s / 0 m/s and −25o / 0o respectively. The reachable set for a given ε is approximated by one / two convex polygons.

II. OVERVIEW AND SYSTEM DEFINITION

Although the presented framework equally applies to al-
ternative formulations, in this paper we employ the collision
avoidance concept described in [4]: for each agent and at
each time-step, a straight-line constant-velocity reference
trajectory (given by uki ∈ R2) is obtained following the basic
VO concept. The obtained holonomic control obstacle (III-
A) represents the relative reference trajectories which would
lead to a collision if agents were able to perfectly track
it. In absence of perfect tracking capability, following our
previous work [4], a variable parameter εi ≥ 0 is introduced
as an enlargement of the robots’ radii. For given agent kino-
dynamics and reference tracking controller, the reachable
set of reference velocities (III-B) then denotes the reference
trajectories that can be tracked with an error below εi,
thereby limiting the agent’s maneuverability.

We denote the state of each agent by zki . In the case of a
kino-dynamic bicycle, it includes position pki , steering angle
and driving velocity. The state update for the agent is given
by f(zki ,uki , t), with t time and f(·) a trajectory tracking
controller continuous in zi. f(·) is described in [4] and [8]
for the case of bicycle and unicycle kinematics respectively.

III. PRELIMINARY DEFINITIONS

A. Reference velocity obstacle

Given two robots with relative position pij = pi − pj
and radii ri and rj , where r∗ = rreal∗ + ε∗, and considering
straight-line constant-speed reference trajectories defined by
the terminal velocities ui and uj , the set of relative reference
velocities uij = ui − uj leading to collision within time τ
(control obstacle COτij) is given by [9]

COτij = {uij | ∃t ∈ [0, τ], ||pij + tuij ||2 ≤ ri + rj}. (1)

This is equivalent to a truncated cone, as shown in Fig. 1
and is only computed if the distance between the two agents
is below a threshold (pij < Kd).

Approximate formulation: The non-convex space R2 \
COτij can be approximated by nCO half planes verifying⋃

l∈[1,nCO]

H l
CO,ij ⊂ R2 \ COτij . (2)

For nCO = 3, as in Fig. 1, the half-planes are

H1
CO,ij = {[cos(α+ β), sin(α+ β)]′ · uij ≤ 0}

H2
CO,ij = {−pij/pij · uij ≤ ((pij − ri − rj)/τ)}

H3
CO,ij = {[cos(α− β), sin(α− β)]′ · uij ≤ 0},

(3)

where pij = ||pij ||, α = atan2(−pij) and β = acos((ri +
rj)/pij). H1

CO,ij and H3
CO,ij represent avoidance to the right

and to the left, respectively. H2
CO,ij represents a head-on

maneuver, which remains collision-free up to t = τ .

B. Reachable set of reference velocities

In order to guarantee collision-free motions it must be
guaranteed that each agent remains within εi of its reference
trajectory. For a maximum tracking error εi and current state
zki , the set of reference velocities uki that can be achieved
with position error lower than εi is given by

Ri = R(zki , εi) = (4)
= {uki | ||(pki + tuki)− fp(zki ,u

k
i , t)|| ≤ εi, ∀t > 0},

where fp(·) represents the position of the agent out of the
state given by f(·).

The set Ri can be precomputed, in closed form for diff-
drive vehicles [8] or by forward simulation for Ackerman
vehicles [4]. Examples of the latter are displayed in Fig. 1.

Approximate formulation: If the agents are holonomic the
set Ri represents a circle, centered either at zero (vmax
constraint, no continuity in velocity) or at the current velocity
(amax constraint). In these cases, the constraints may be
written as a quadratic constraint and used in the formulation
described in the forthcoming sections. For general kino-
dynamics, if the set Ri is well behaved (this is the case
for the studied diff-drive and Ackerman agents) it can be
approximated by one or two convex polygons (intersections
of half planes). The half-planes must verify⋂

l∈[1,n1
R,i]

H1,l
R,i ∪

⋂
l∈[1,n2

R,i]

H2,l
R,i ⊂ Ri, (5)

with n2R,i = 0 if Ri can be approximated by a single convex
polygon. Fig. 1 depicts both cases.

2834

The number and position of the half-planes can be com-
puted from the set Ri by maximizing the covered area within
a certain threshold. Values of n1R,i range between three
and five. These half-planes may also be pre-computed for
different values of current state and tracking error.

C. Preferred reference velocity and inter-agent distance

For each agent independently, and at each time step a
preferred reference velocity ūki is computed, which can be
given by a vector to a goal destination, a vector field, a global
planner or a trajectory tracker.

In general, velocity or control obstacle methods tend
to minimize inter-agent distance, bringing it to zero in
the limit which may become unsafe in real scenarios. To
approximately maintain a minimum inter-agent distance, ūki
is corrected by adding a repulsive velocity given by

ūrep,k
i|j = max(0, Vr(Dr − pkij)/(Dr − ri− rj)) pkij/p

k
ij , (6)

where Vr is the maximum repulsive force and Dr the
preferred minimal inter-agent distance.

IV. JOINT OPTIMIZATION

Let us now consider a group of N agents that move on
a planar surface. Let them be controlled by a centralized
entity. Then the joint set of reference velocities is denoted
by uk = [uk1 , . . . ,ukN] ∈ R2N . Given a joint utility function
to maximize at the current time step, or equivalently, a joint
cost function C(uk) to minimize, the optimal collision-free
reference velocities are given by

argmin
uk

C(uk)

s. t. uki − ukj /∈ COτij ∀i < j with pkij < Kd

uki ∈ Ri ∀i
(7)

A naive solution strategy is to sample in R2N . In that case,
constraint verification is very fast (evaluation of an equation
for COτij and a look-up in a table for Ri). However, the
dimension of the sampling space becomes prohibitive for
even moderate N. We thus propose two alternative strategies,
where the cost function is quadratic and the constraints
are half-planes. The first strategy approximates the problem
via Quadratic Programming (QP). The second formulation
consists of a Mixed Integer Quadratic Program (MIQP). The
latter formulation is optimal with respect to (7).

V. QP FORMULATION: LOW COMPLEXITY SOLUTION

This method provides either a set of collision-free ref-
erence controls uki or an infeasible-problem flag with very
low computational cost. It can be shown that the solution is,
by construction, at least as good as that of the distributed
VO-based reciprocal collision avoidance schemes presented
in [3] and [4].

A. Joint utility function
The joint cost function is designed as a quadratic function.

It’s most intuitive form being the cumulated distance of each
agent’s reference velocity to its preferred one ūki .

In [10] it was shown that pedestrians prefer to maintain a
constant velocity in order to minimize energy. Preference was
given to turning instead of changing the speed. Furthermore,
penalizing changes in speed leads to a reduction of deadlock
situations. This idea can be formalized as an elliptical cost,
higher in the direction parallel to ūki , and lower perpendicular
to it. Let λ > 0 represent the relative weight.

To take into account avoidance preference between agents,
which can be interpreted as aggressive vs. shy behavior,
relative weights ωi are added.

Let γi be the orientation of ūki . The joint cost is given by∑N
i=1(0.5uki

′
Hk
i uki + fki uki), with

Hk
i = ωi

[
cos γi − sin γi
sin γi cos γi

] [
λ 0
0 1

] [
cos γi sin γi
− sin γi cos γi

]
fki = −(Hk

i ūki)T . (8)

Let Hk and fk be the 2N ×2N matrix and the 2N vector
formed by concatenation of the individual Hk

i and fki .

B. Constraints
The nCO half-plane constraints (3) representing each of

the control obstacle constraints are non additive. Therefore
only one can be selected for each COij . We denote the
index of the selected half-plane by sij , which can be chosen
following different criteria. Sensible choices include:

1) Fixed side for avoidance: sij = 1 for every CO
2) Maximum constraint satisfaction for the previous rel-

ative reference velocity uk−1i − uk−1j .
3) Maximum constraint satisfaction for the preferred rel-

ative reference velocity ūki − ūkj .
The second option is the preferred criteria as it maximizes
the feasible region of reference controls.

If the reachable set (5) is approximated by two convex
regions, only one (ti) is selected, either the closest one to the
previous reference control or the closest one to the preferred
reference control. Note that at high speeds the reachable set
is formed by a single region.

The constraint given by each half-plane is written in lifted
domain (R2N), with four non-zero terms (i, j) for each
H
sij
CO,ij and two (i) for each Hti,l

R,i . These constraints are
denoted by n∗∗ uk ≤ c∗∗.
C. Optimization

The optimum of the simplified problem is found by solving
the following quadratic program with linear constraints

argmin
uk

0.5uk′Hkuk + fkuk

s. t. nsijCO,iju
k ≤ csijCO,ij ∀i < j | pij < Kd

nti,lR,iu
k ≤ cti,lR,i ∀i, ∀l ∈ [1, ntiR,i]

Efficient algorithms, and off-the shelve libraries exist1 to
solve this QP in real time for large number of agents.

1We use the IBM ILOG CPLEX optimizer.

2835

VI. MIQP FORMULATION: OPTIMAL SOLUTION

Given that the feasible space is reduced by selecting a sin-
gle half-plane constraint for each CO, the QP optimization
of the previous section returns a suboptimal solution. The
optimal reference velocities can be obtained by adding binary
variables to the formulation. The optimization then becomes
a Mixed Integer Quadratic Problem that can be solved via
branch-and-bound, where the maximum number of explored
nodes defines the ratio between optimality and computational
time. To this end, nCO binary variables need to be added for
each control obstacle and another two for each reachable set
approximated by two convex regions.

In particular, a constraint given by n∗∗u∗∗ ≤ c∗∗ is rewritten
as n∗∗u∗∗ −Mb∗∗ ≤ c∗∗, where M is a large enough constant
and b∗∗ the binary variable. b∗∗ = 0 if the constraint is to
be satisfied and b∗∗ = 1 otherwise. Let bk be the vector of
binary variables.

A. Joint utility function

The cost function with respect to the reference velocity uk
is retained from the QP case. In contrast to the QP case where
a single half-plane constraint was selected beforehand for
each CO, now all of them are included in the optimization.
Therefore, a side preference for the collision avoidance can
now be added by appropriately selecting a penalty for the
binary variables. Let us denote by bij,s the nCO binary
variables for the half-plane constraints representing COij .

For the case of nCO = 3, the rule: ”prefer to avoid on the
right” is added by penalizing bij,1 = 1 with a weight ws.
The vector of linear cost with respect to the binary variables
is then given by

fkb = [ws 0 0 . . . ws 0 0︸ ︷︷ ︸
3|CO|

0 0 . . . 0 0︸ ︷︷ ︸
2|I2|

],

where CO is the set of CO constraints, I2 is the set of agents
whose reachable set is approximated by two convex regions,
I1 = [1, N] \ I2 and |X| the cardinality of X .

B. Constraints

All half-plane constraints are included in the optimization,
binary variables are added. Further constraints on the binary
variables are added to impose that only one out of the nCO
Hs
CO,ij constraints is active for each COij and that only one

out of the two convex regions is active for i ∈ I2.

C. Optimization

At each time-step k, the joint optimal solution is found
by solving the following Mixed Integer Quadratic Program
with linear constraints and binary variables

argmin
uk, bk

0.5
[
uk bk

] [Hk 0
0 0

] [
uk

bk
]

+
[
fk fkb

] [uk

bk
]

s. t. nsCO,ijuk −Mbkij,s ≤ csCO,ij ∀ij, s ∈ Set1∑nCO

s=1 b
k
ij,s = nCO − 1 ∀i < j | pkij < Kd

n1,l
R,iu

k ≤ c1,lR,i ∀i, l ∈ Set2
nt,lR,iu

k −Mbki,l ≤ c
t,l
R,i ∀i, t, l ∈ Set3

bki,1 + bki,2 = 1 ∀i ∈ I2,

where Set1 = {i < j | pkij < Kd, s ∈ [1, nCO]}, Set2 =
{i ∈ I1, l ∈ [1, n1R,i]} and Set3 = {i ∈ I2, l ∈ [1, ntR,i], t =
{1, 2}}. The number of binary variables increases fast with
the number of agents, therefore a limit in the number of
explored nodes is set to achieve good performance. Com-
plexity and run-time analysis are given in Section IX. This
optimization can be solved with off-the-shelve MIP solvers1.

D. Initialization of the MIQP

To reduce the computational time of the algorithm an
initial point may be specified. The QP solution of Section V
with the constraints that a priory maximize the feasible set of
reference velocities (i.e. selection criteria of 2 in Section V-
B) is well suited for this purpose. This typically returns
a feasible, although not optimal, solution with very low
computational time. Optimality of the solution increases with
time as more nodes are explored. Furthermore, the algorithm
can exit at any time to cope with run-time constraints. This
method thus features anytime properties.

VII. FORMAL PROPERTIES

A. Complexity analysis

The maximum number of control obstacles equals N(N−
1)/2, nonetheless, only those for which agents are closer
than a constant Kd are considered, furthermore, a maximum
number of control obstacles Kn per robot might be fixed.

1) QP formulation: The optimization is defined by 2N
continuous variables. The number of constraints is given by

|CO| ≤ min(N(N − 1)/2,KnN) (linear)∑N
i=1 n

1
R,i ' 4N (linear) or N (quadratic),

depending on if the reachable set is approximated by a
convex polygon or an ellipse. This optimization can be solved
very efficiently even for large number of agents.

2) MIQP formulation: The optimization is defined by 2N
continuous variables and nCO|CO| + 2|I2| binary variables
(nCO = 3 here). The number of constraints is given by

nCO|CO| ≤ nCO min(N(N − 1)/2,KnN) (linear)∑N
i=1 n

1
R,i +

∑
i∈I2 n

2
R,i (linear) or N + |I2| (quadratic)

|CO|+ |I2| (linear).

Due to the relatively large number of binary variables, this
optimization can only be solved inside a real-time control
loop for a low number of agents. For larger groups of robots,
a maximum number of explored nodes is set and a solution
given by the QP is refined. Further details on computational
time are given in Section IX.

B. Collision-avoidance guarantees

We distinguish between three cases.
1) QP/MIQP feasible: If the optimization program is

feasible at the current time step, a reference velocity is found
for every agent that guarantees collision-free motion up to
at least time τ , typically a few seconds. Nonetheless, if
all the agents are taken into account and none of the half-
plane constraints H2

CO,ij are active for agent i, it’s reference
velocity is collision-free to infinity.

2836

2) QP/MIQP unfeasible: If the optimization is unfeasible,
τ can be decreased (equivalent to a translation of the H2

CO,ij

constraints), although the optimization may still be unfeasi-
ble and safety decreases. In order to prioritize safety, if the
QP/MIQP is unfeasible, the speed of all vehicles is reduced
at maximum deceleration rate till halt or the optimization
becomes feasible. A per-vehicle strategy based on the slack
variables remains as future work.

3) Dynamic obstacles: The feasibility of the optimization
indicates if the dynamic obstacles can be avoided (assuming
they adhere to their predicted reference velocity) or a colli-
sion is imminent. A fast control loop is able to handle small
deviations in the prediction.

VIII. EXTENSIONS

A. Static obstacles

Static obstacles are added for each agent i by first com-
puting the control obstacle with respect to obstacle O

COτiO = {ui | ∃t ∈ [0, τ], pi + tuij ∈ O +B(ri)}, (9)

where O + B(ri) represents the Minkowski sum of the
obstacle with a disk of radius ri. Each COτiO is approximated
by one or more half-plane constraints that can be added
in the QP or MIQP optimizations. The computation of this
constraint is highly efficient if the obstacle is approximated
by an ellipse or polygon. Due to the localness of the collision
avoidance method, only the obstacles in the vicinity of the
agent and in direct line of sight need to be added. To avoid
deadlocks a global planner is required for guidance.

B. Uncontrolled dynamic obstacles

Consider d an agent of radius rd that is not controlled
by the system, and ûd its estimated reference velocity, given
for instance by a prediction based on its previous states. For
any agent i in its vicinity, the control obstacle COτid and
its approximation by half-planes are given by equations (1)
and (3), where ûd is known and not an optimization variable.

C. 3D Euclidean Space

For ease of explanation we introduced the method for
agents moving on a 2D plane. Nevertheless, it readily extends
to agents moving in 3D space.
• Reference velocities: uki ∈ R3.
• Control obstacles COτij : truncated cones, given by

Equation (1), which can be properly approximated by
nCO = 5 half-spaces.

• Reachable sets Ri: in [7] such a construction via an
LQR trajectory tracking controller is described, where
the reachable set is approximated by a sphere.

In this case, the QP optimization is characterized by 3N
variables, |CO| ≤ KnN linear constraints and N quadratic
constraints, which can be solved efficiently with low com-
putational cost.

The MIQP is characterized by 3N continuous variables,
nCO|CO| binary variables, (nCO +1)|CO| linear constraints
and N quadratic constraints. A detailed study of this case
remains as future work.

IX. EXPERIMENTAL RESULTS

Experiments are performed in simulation for agents of
1.3m outer-radius with bicycle kinematics and maximum
values of 5m/s (driving speed), 2m/s2 (driving acceler-
ation), 30o (steering angle) and 30o/s (steering velocity).
The control law of [4] is used to track a reference trajectory
and the remaining parameters of the optimization are set
to ε = 1m, τ = 6 s (reduced to τ = 3 s if unfeasible),
Kd = 25m, Dr = 9.2m, Vp = Vr = 4m/s (equal to
preferred speed), λ = 2, ωs = 1.5, a maximum of 10N
COij constraints are included in the optimization (sorted by
pij) and a maximum of 200 nodes are explored in the MIQP.
Position noise of 0.1m is added and the size of the scenario
is (15 + 1.5N)m. Timings for the optimization are given
for a Matlab-mex interface of CPLEX 11 running in a single
thread (25% CPU) of a 2.66GHz laptop. In the accompanying
video a representative run of the experiments is shown.

The experiments of this section are performed and com-
pared for both the QP and the MIQP. For the QP, and for
each CO, the H

sij
CO,ij constraint is selected following the

criteria of maximum constraint satisfaction with respect to
the previous relative reference velocity (Section V-B-2). This
prioritizes feasibility and gives good results in general, but
ignores symmetries. For instance, if for Experiment 1 the
constraints Hsij

CO,ij are selected following Section V-B-1 a
coordinated anti-clockwise rotation would be imposed and
no deadlock would appear for the QP case, but this would
reduce performance in the general case (i.e. Experiment 2).

Experiment 1: Two to 50 agents exchange antipodal po-
sitions on a circle, where ūki is the vector to the goal of
magnitude Vp. Time to convergence and computation time
are shown in Fig. 2. All agents successfully reach their
goal positions with the MIQP formulation. For large groups
of agents a deadlock appears when the suboptimal QP is
used without imposed anti-clockwise coordination. With the
MIQP formulation coordination is always achieved leading
to convergence for any number of agents.

Experiments 2 and 3: Two to 50 agents, divided in two
groups of equal size, each tracks a given path as shown
in Fig. 3. The preferred reference velocity ūki is given
by a trajectory tracker with 4m/s preferred speed on the
curve. Each experiment is repeated five times with agents
starting from a random configuration. Combined results of
Experiments 2 and 3 are shown in the bottom row of Fig. 2
and in Fig 3. The MIQP outperforms the QP (resulting in a
lower tracking error) but requires higher computational time.

In both experiments computational time strongly depends
on the number of neighbors considered in the collision
avoidance. In Experiment 1 this is higher as all agents pass
near the center of the circle. Experiment 2 is a more realistic
scenario where only a few agents are in the neighborhood.
Especially in this latter case, the centralized QP approach
provides real time performance (< 0.03 s) even for large
groups of agents. On the other hand, the MIQP keeps real
time capabilities for groups below eight agents.

2837

Fig. 2. Top left: Time to convergence / deadlock for Exp. 1 and changing number of agents, red: QP, blue: MIQP. Top middle / right: Computational time
statistics for an optimization step (QP / MIQP respectively) of Exp. 1. Bottom left: Mean time to deadlock for five runs of Exp. 2 and 3 (200 s maximum
simulated time). Bottom middle / right: Computational time statistics for an optimization step (QP / MIQP respectively) of Exp. 2 and 3 combined.

X. CONCLUSION

In this paper, a centralized method for collision avoidance
among multiple agents has been presented that maximizes a
joint utility function. The algorithm builds on the concept
of velocity obstacles and its extension to arbitrary kino-
dynamics and applies to heterogeneous groups of agents
moving in 2D or 3D environments. The joint optimization
is formulated as a QP / MIQP where real-time computation
can be achieved as a trade-off with optimality. In experi-
ments with groups of two to 50 agents we showed that the
joint MIQP outperforms a joint sub-optimal QP, which by
construction is, at least, as good as equivalent distributed
methods. Furthermore, the proposed algorithm, not only
demonstrates the value of coordination, but may serve as

Fig. 3. Distance [m] to the desired path for varying number of agents for
combined experiments 2 and 3. Red: QP, blue: MIQP, black: outliers.

a benchmark for distributed collision avoidance methods, in
particular for those based on the velocity obstacle paradigm
and those that model interaction.

REFERENCES

[1] Y. Abe and M. Yoshiki, “Collision avoidance method for multiple
autonomous mobile agents by implicit cooperation,” in Intelligent
Robots and Systems, 2001. Proc. 2001 IEEE/RSJ Int. Conf. on, vol. 3,
pp. 1207–1212 vol. 3, 2001.

[2] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beard-
sley, “Image and animation display with multiple robots,” Int. Journal
of Robotics Research, vol. 31, pp. 753–773, May 2012.

[3] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Int. Symp. on Robotics Research, 2009.

[4] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart,
“Reciprocal collision avoidance for multiple car-like robots,” in Proc.
IEEE Int. Conf. Robotics and Automation, 2012.

[5] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program (miqp) trajectory generation for heterogeneous quadrotor
teams,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), May 2012.

[6] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2012.

[7] J. Alonso-Mora, M. Schoch, A. Breitenmoser, R. Siegwart, and
P. Beardsley, “Object and animation display with multiple aerial
vehicles,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2012.

[8] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart, “Optimal reciprocal collision avoidance for multiple non-
holonomic robots,” in Proc. Int. Symp. on Distributed Autonomous
Robotics Systems, 2010.

[9] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. Journal of Robotics Research, vol. 17,
no. 7, pp. 760–772, 1998.

[10] S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, and D. Manocha,
“Pledestrians: A least-effort approach to crowd simulation,” Proc.
ACM SIGGRAPH/Eurographics Symp. on Computer Animation,
pp. 119–128, 2010.

2838

