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Abstract— This paper presents a formalism that exploits
deformability during manipulation of soft objects by robot
teams. A hybrid centralized/distributed approach restricts cen-
tralized planning to high-level global guidance of the object
for consensus. Low-level control is thus delegated to the
individual manipulator robots, which retain manipulation and
collision avoidance guarantees by passing forces to one another
through the object. A distributed receding horizon planner
provides local control, formulated as a convex optimization
problem in velocity space and incorporating constraints for both
collision avoidance and shape maintenance. We demonstrate
teams of mobile manipulators autonomously carrying various
deformable objects.

I. INTRODUCTION

Conventional automated assembly robots operate affixed
to the factory floor in an environment where uncertainty
is managed and engineered away by careful human design.
This approach has been very successful for production lines,
where the majority of parts behave as rigid bodies. In the
near future, agile assembly systems will incorporate mobile
manipulator robots to make assembly systems adaptable to
changing circumstances, including the routine manipulation
of soft objects that require many hands to control.

A. Contribution

The focus of this paper is a method for collaborative ma-
nipulation of deformable objects, objects of variable shape.
In this work, a geometric formulation is exploited that links
the problem with that of pattern formation.

We contribute a scalable framework for collaborative car-
rying of deformable objects and introduce two variants of a
convex optimization for local motion planning and control
(one centralized, one distributed), that account for static and
dynamic obstacles. In the distributed case, we rely on a
system of explicit force exchange as a means of coordination.

We experimentally demonstrate up to three KUKA
YouBot [1] mobile manipulators carrying various deformable
objects (a video is available online).

B. Assumptions and limitations

To achieve efficient centralized and distributed optimiza-
tions, the following main assumptions are made in this work:
• a purely kinematic model of the robots and object,
• piecewise constant robot speeds,
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Fig. 1. Three mobile manipulators carrying a deformable bed sheet.

• treatment of the object as a reconfigurable polygon, the
configuration of which is given by the gripper positions.

These assumptions are reasonable thanks to the low inertia
of the carried objects and the holonomicity of the mobile
platform. Furthermore, they enable a very efficient local
planner that allows for high-frequency updates, in the order
of 10Hz, which in turn, renders the assumptions reasonable.

II. RELATED WORKS

Currently many fabrication processes, such as car manu-
facturing, are mostly automated with fixed manipulators, but
mobile robots are steadily increasing their role in automated
processes. The factory of the future will consist of mobile
robots working hand in hand with humans, providing higher
flexibly and making it possible to automate large scale
processes, like those of the aeronautics sector [2].

One task of mobile robots is to collaboratively manipulate
an object. A set of pushing protocols to cooperatively move
rigid structures was first proposed by [3]. In contrast, we
exploit a geometric formulation of the problem and coin
it as a constraint optimization. Regarding manipulation of
rigid objects by multiple robots, several approaches have
been proposed. Either centralized: using feedback control [4]
or potential fields [5]; or distributed using caging [6], force
sensing [7], or leader following [8] combined with force
sensing. We borrow the idea of force sensing, but consider
it only when the object reaches a limit in deformation.

Centralized methods for manipulation of flexible objects
by multiple robots include: elastodynamic equations [9],
which do no consider collision avoidance, optimal con-
trol [10], where the number of variables quickly grows
with the number of robots, and navigation functions [11],
which are computed with respect to a fix set of obstacles.
Recently, centralized methods for collaborative handling (in
obstacle-free environments) of both rigid objects suspended
by cables [12] and a flexible net [13] have been demon-
strated with aerial vehicles. In contrast. our method can be
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distributed, accounts for static and dynamic obstacles and
does not require any pre-computation with respect to the
environment; albeit it applies to holonomic platforms.

Besides multi-robot navigation, manipulation of flexible
objects by multiple fixed robots has also been explored [14],
as well as motion planning for elastic objects within the
context of medical applications [15]. Deformable objects
have been extensively studied in computer graphics, where
several complex methods for simulation were recently de-
veloped [16]. We retain the idea of using a representation
of the object given by a triangulation, although in a much
simplified form and adapted to the mobile manipulation task.

The receding horizon local planner presented in this paper
builds on the concept of Velocity Obstacles (VO) [17],
where the velocities leading to a collision are characterized
in velocity space for omnidirectional agents, and on their
recent extensions by [18] and [19]. [18] proposed the idea
of approximating the VO by a linear constraint, as well as
how to take into account collaboration in the avoidance.
[19] presented a centralized optimization based on a similar
concept and extended to generalized dynamics.

The remainder of this paper is structured as follows.
Section III presents the system architecture. In Section IV
the local planning approach is described. In Section V exper-
imental results are discussed, and Section VI concludes the
paper, outlining an extension to human-robot collaboration.

III. SYSTEM ARCHITECTURE

Throughout this paper x denotes scalars, x vectors, ||x||
its Euclidean norm, x̂ its direction, X matrices, and X sets.

We architected a system to perform distributed manip-
ulation of deformable objects. Specifically, the task is to
transport an object B ⊂ R2 from its initial configuration B0

to a final configuration BF while respecting its deformation
limits and avoiding collisions with static obstacles O ⊂ R2

and other agents of radii ri, for i ∈ A = {1, . . . , n}. In this
section, we provide a high-level overview of agent and object
representations as well as the hierarchy of motion planners
that constitutes our distributed planning framework.

A. Agents

Two types of agents interact in the course of the task:
1) Manipulator (M) robots transport the object.
2) Reacting agents (R) are dynamic obstacles that do not

assist in object transport.
Let A = M∪R. Typical manipulators, like the KUKA

YouBot [1] are omnidirectional platforms. We consider m
omnidirectional manipulators, with radii ri, position pi ∈ R2

and velocity vi = ṗi, for i ∈ M = {1, . . . ,m}, collab-
oratively carrying the deformable object B and with input
velocity ui. Limits ||ui|| < umax are enforced. Each manip-
ulator is modeled by a mobile platform and an extendable
arm, denoting by p̆, v̆ and ŭ the position, velocity and input
velocity for the gripper. The upper ”gripper-like” symbol ˘
denotes variables for the gripper. Fig. 2 shows two possible
models. For simplicity, we represent the manipulators and
agents with a circular footprint, but the results readily extend
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Fig. 2. Equivalent schemas of the mobile manipulator with extensible arm
(minimum a

¯
and maximum ā length) and its circular model. The orientation

of the robot equals that of the arm.

to robots of arbitrary shape with the assumption of constant
orientation within the short time horizon of the local planner.
The disk of radius ri centered at c is denoted by Dc,ri ⊂ R2.
In practice ri is equal to the maximum arm length ā.

B. Object Parametrization

Each manipulator computes the configuration of the object
based on observations of other manipulators’ gripper loca-
tions, such that κ(p̆1, . . . , p̆m) ∈ R2m 7→ B ⊂ R2. In its
simplest version the vertexes equal the grippers’ positions,
but the definition is general and the object may have an
arbitrary shape. See Fig. 3 for a representative schema.

The valid configurations of the object are described by
the inter-manipulator distances to neighbors. In particular, the
total number of neighbors needed to fully define the shape of
the object is given by the edges of the Delaunay triangulation
of the manipulator positions. The number of edges is thereby
reduced from O(n2) to O(n).

Definition 1 (Object shape): The shape of object B is
defined by a Delaunay triangulation of the m grippers’
positions p̆l, l ∈ M. Edges in the triangulation define a
manipulator’s neighbors. Constraints on the minimum d

¯
j
i and

maximum d̄ji edge distance between manipulators i and j
define allowable shape deformations. For m = 2 the valid
object configurations are given by d

¯
2
1 ≤ ||p̆1 − p̆2|| ≤ d̄2

1.
The shape of a triangle is uniquely defined by its edge

distances and therefore a shape is defined by its triangulation.
The Delaunay triangulation is chosen as it maximizes the
minimum angle of the triangles, minimizing sensitivity to
robot motion. Fig. 3 shows a schema with maximum and
minimum configurations.

In the case of a rigid object, its position pB , orientation
θB , linear vB and angular ωB velocities are uniquely defined.
For the case of a deformable object we define them as the
mean of grippers’ position p̆i and velocity v̆i,

pB =
∑
i∈M

p̆i

m , θB = θ0
B +

∑
i∈M

˘̂pi−pB−θ
0
iB

m ,

vB =
∑
i∈M

v̆i
m , ωB =

∑
i∈M

(v̆i−vB)·niB

m||p̆i−pB ||
,

(1)
where θ0

B is the reference orientation of the object, θ0
iB the

reference angles ̂p̆0
i − p0

B , [niB , 0] = [0, 0, 1] × [tiB , 0] and
tiB = p̆i− pB . The mean of angles is given by the angle of
the mean of unit vectors.
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Fig. 3. Schema of a deformable object with minimum and maximum size
triangulations with respect to the grasping points. Edges have upper (d̄ji )
and lower bounds (d

¯
j
i ).

We define the expansion factor of the object by eB =∑
i∈M

(v̆i−vB)·tiB
m||p̆i−pB ||

, the average of the variation in distance
between each manipulator and the instantaneous center of the
object. Alternatively, it might be beneficial in some cases to
use the expansion of the neighbors’ edges.

C. Global Motion Planner

Recognizing that the individual manipulators do not di-
rectly communicate, a guarantee on coordination among
manipulators requires that a common approximate global
plan for the object is available to all manipulators. The global
motion planner provides guidance towards the ultimate goal
in the form of a trajectory. The need for consensus arises
primarily from a desire to ensure that all manipulators select
trajectories from the same homotopy class. We implemented
the global planner using the off-the-shelf OMPL [20] library
and configured it to replan periodically.

D. Local Motion Planner

An instance of the local motion planner runs on each
manipulator and receives goals from the global motion
planner. The local planner (Section IV) commands the linear
and angular velocities of the manipulators and guarantees
shape maintenance and collision avoidance.

E. Communication

The system architecture is designed for scalability, in order
to support carrying large, complex objects with many robots.
Therefore, low-throughput message passing is restricted to
be linear in the number of agents, whereas high-rate ob-
servations are at constant scale per manipulator on average.
Messages come in a variety of forms, detailed below.

1) Global-to-Local Communication: The centralized
global planner issues global guidance to all the manipulator
robots at a rate of 0.1 Hz. The message comprises a trajectory
for a simplified representation of the object, comprising a
series of waypoints. Each waypoint contains the following
state information for the object: position, orientation, and a
scalar expansion factor. The manipulators store the trajectory
and move towards each goal in sequence.

2) Inter-Agent Communication: Manipulators do not di-
rectly exchange messages. Instead, they observe the position
and velocity of their neighbors.

In addition, manipulators indirectly pass forces among
each other in the form of a resultant force exerted upon the

deformable object. Since the object deforms in response to
these forces, a non-zero resultant occurs only among robots
that are at a limit defined by one manipulation constraint.

Agents are ignorant of one another’s planned trajectories
A manipulator observes each agent’s position and velocity.
As future trajectories are unknown, the manipulator applies
the constant velocity assumption to the agent for a given
time horizon, and then predicts its behavior according to the
agent’s class membership.

3) Force communication: For distributed manipulation,
forces transmitted through the object are required for show-
ing intent and for coordination. Manipulators exert forces
on the object when it reaches its limits1. Manipulator i may
exert force f̄i applied at its gripping position p̆i.

Manipulators are controlled in velocity. For a free-moving
vehicle we assume that its velocity vi equals its control input
ui (and v̆i = ŭi). For a manipulator grasping an object
carried jointly with other manipulators, its velocity may not
equal its control input due to external constraints. In this case
a force is transmitted to the object related to the difference
between the commanded velocity and the feasible velocity2

f̄i = f(ŭi − v̆i). (2)

We assume that each manipulator knows its own exerted
force f̄i and can sense (at the gripping position p̆i) the
resultant force f

¯i
and moment m

¯ i
of the forces exerted by

all other agents.
To illustrate the concept, consider the ordinary case of

two humans jointly carrying a rigid object. While moving
the object, a change in the direction by person A – such as
to avoid an obstacle – will create a tension on the object
that can be sensed by person B. Person B would then be
able to react accordingly by adopting a velocity compatible
with the sensed force. On the other hand, when carrying a
deformable object such as a towel, forces are only sensed
when the object reaches its upper limit in shape.

IV. RECEDING HORIZON LOCAL MOTION PLANNER

Given an approximated global plan for the manipulated
object, shared by all the manipulators, the preferred linear
velocity v̄B , angular velocity ω̄B and preferred expansion
ēB of the object are computed with a proportional controller
to guide the object to the state at the next waypoint.

In each time step, given the current position and velocity
of all manipulators and agents, a new velocity is computed
by solving an optimization problem in velocity space. In
this section we formulate it as a convex optimization with
quadratic cost and linear and quadratic constraints. See
Figure 4 for an schema.

We distinguish between two types of constraints, for
collision avoidance and for shape maintenance. In the dis-
tributed case, the shape maintenance constraints are treated

1Forces arising from a spring model can also be added.
2The velocity of the robot wheels is typically controlled via current. If

the wheel does not turn at the expected rate, a torque is created in the motor,
which is transmitted as a force to the grabbed object. If a PI controller is
used, this force is modeled by a first order system with saturation.
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Fig. 4. Schemas of the centralized and distributed algorithms, including inputs, constraints and outputs..

as soft constraints that might be relaxed in order to avoid
collisions. To maintain shape, the resulting velocity would
be partially transformed into a force, transferred to the object
and sensed by the other manipulators (see Section III-E.3),
thus indicating the unfeasibility. In this section, we detail the
optimization costs, constraints, algorithms, and guarantees.

Throughout this section recall that the upper ”gripper-
like” symbol ˘ denotes variables for the gripper and the
lower B identifies variables for the center of the object.

A. Optimization cost

The optimization cost is given by several terms, with user-
defined weights K∗. The first and second terms penalize
changes in manipulator and gripper velocity, the third pe-
nalizes relative velocities between the gripper and the center
of the manipulator and the remaining terms penalize the
deviation to the preferred motion parameters of the object.

For the distributed case, the cost C(ui, ŭi) is given by

K0||ui−vi||2 +K1||ŭi− v̆i||2 +K2||ŭi−ui||2 + ||ŭi− v̄i||2,

where

v̄i = v̄B + ω̄B ||p̆i + pB ||niB + ēB ||p̆i − pB ||tiB + vi,rep

is the preferred velocity for the gripper given the desired
linear v̄B and angular ω̄B velocities and expansion ēB of
the object. The term vi,rep is the total repulsive velocity
for manipulator i with respect to neighboring agents in A,
computed as in [19] and similar to a repulsive potential field.

For the centralized case, with u1:m = [u1, ...,um] and
recalling Equation 1 that relates the gripper velocities with
the motion of the object, the cost C(u1:m, ŭ1:m) is given by

K0||u1:m − v1:m||2 +K1||ŭ1:m − v̆1:m||2+

K2||ŭ1:m − u1:m||2 +
∥∥∥v̄B −

∑
i∈M

ŭi

m

∥∥∥2

+∣∣∣ω̄B −∑i∈M
(ŭi−vB)·niB

m||p̆i−pB ||

∣∣∣2 +
∣∣∣ēB −∑i∈M

(ŭi−vB)·tiB
m||p̆i−pB ||

∣∣∣2 ,

B. Shape maintenance constraints
Given a Delaunay triangulation of the manipulated object

and its limits (see Section III-B), the necessary constraints for
shape maintenance are defined in this section. Following the
receding horizon approach, manipulators are considered to
move at constant speed for a given time horizon τs for which
the constraints must be satisfied (the shape of the object must
remain within its limits). These constraints are formulated
with respect to the gripper (tip of the manipulator’s arm).

The change in velocity for the gripper of manipulator
i ∈ M is denoted by ∆v̆i = ŭi − v̆i. The force f

¯i
and

moment m
¯ i

sensed by manipulator i provide an indication
of the resultant change in velocity that the other manipulators
require. Recalling Eq. (2), the required change in velocity is
given by3 ∆vFi|j = f−1(f

¯i
+ m

¯ i
(p̆j − pB)).

In the distributed case, each manipulator maintains a
convention about the change in velocity of the other ma-
nipulators. To globally maintain the constraint satisfaction,
for every pair of neighbors i, j, the conservative convention
is that the change in relative velocity equals twice the change
of velocity of each manipulator4 minus the term ∆vFi|j , which
is expected to be executed by both agents. This leads to

∆v̆ij = 2(∆v̆i −∆vFi|j). (3)

When distributed, the optimization can become overcon-
strained. In that case collision avoidance constraints are
treated as hard constraints (that must always be satisfied) and
shape constraints as soft constraints. The later are relaxed
by ξi ≥ 0, representing the amount by which the mini-
mum/maximum inter-agent distances are reduced/increased.

Constraint 1 (Minimum neighbor distances): For every
pair of neighbor manipulators i, j ∈ M connected by an
edge of the object triangulation, the gripper velocities must
satisfy ‖(p̆i+ ŭit)− (p̆j + ŭjt)‖ ≥ d

¯
j
i −ξi, for all t ∈ [0, τs].

For each t ∈ [0, τs], the set of infeasible relative velocities
ŭij = ŭi − ŭj is given by a circle of radius (d

¯
j
i − ξi)/t

3Our experiments use a simplistic model. We assume f(∆v) = f and
f−1(f) = ∆v/2. The factor is added to avoid over reaction and oscillations.

4Other conventions are possible, such as constant neighbor’s velocity.
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Fig. 5. Manipulation constraints for two manipulators. Left: In relative ve-
locity space: quadratic constraint (circle, pink - infeasible side) for maximum
inter-manipulator distance (Constraint 2) and non-convex constraint (grey
- infeasible) for minimum distance (Constraint 1), approximated by three
linear constraints. Right: In grey, convex shape constraint (Constraint 3) of
infeasible positions p̆i + ŭiτs.

centered at −p̆ij/t = −(p̆i − p̆j)/t. Their union defines a
cone, in grey in Fig. 5-left. Its complement is non-convex.
We first approximate it by three excluding linear constraints
of the form n · ŭij ≤ b and given by (see Fig. 5-left)[

cos(α± β)
sin(α± β)

]
· ŭij ≤ 0, −

p̆ij
p̆ij
· ŭij ≤

p̆ij − d
¯
j
i + ξi

τs
, (4)

where p̆ij = ||p̆ij ||, α = atan2(−p̆ij) and β = acos((d
¯
j
i −

ξi)/p̆ij). And second, by selecting the linear constraint
with maximum constraint satisfaction for the current relative
velocity, given by argmin

n,b
(n · v̆ij − b).

For the distributed optimization, by substitution of ŭi =
v̆i + ∆v̆i and recalling Eq. (3), the constraint is given by

n · ŭij − b = n · (v̆i − v̆j + ∆v̆ij)− b =
n · (v̆i − v̆j + 2∆v̆i − 2∆vFi|j)− b =

n · ŭi + (n · (−v̆i − v̆j − 2∆vFi|j)− b) ≤ 0,
(5)

Constraint 2 (Maximum neighbor distances): For every
pair of neighbor manipulators i, j ∈ M connected by an
edge of the object triangulation, the gripper velocities must
satisfy ‖(p̆i + ŭit) − (p̆j + ŭjt)‖2 ≤ (d̄ji + ξi)

2, for all
t ∈ [0, τs].

This constraint can be seen to be quadratic and convex
in its centralized formulation. For the distributed case, by
substitution of ŭj = v̆j + ∆v̆j and recalling Eq. (3) the
constraint is

ŭTi Iŭi + lT ŭi ≤ ((d̄ji + ξi)/τs)
2 − lT l)/4, (6)

where l = (p̆i − p̆j)/τs − v̆i − v̆j − 2∆vFi|j and I is the 2x2
identity matrix.

Constraint 3 (Convex polygonal shape): If a convex
shape is required, the future position of manipulator
i ∈ M must guarantee [0, 0, 1] · ((p̆i(i−1) + ŭi(i−1)τs) ×
(p̆(i+1)(i−1) + ŭ(i+1)(i−1)τs)) ≥ 0, as shown in Fig. 5-right..

The constraint is rewritten as (p̆i(i−1) +

ŭi(i−1)τs)
T (p̆(i+1)(i−1) + ŭ(i+1)(i−1)τs)

⊥ ≥ 0, where
x⊥ denotes the perpendicular vector of x given by
[x⊥, 0] = [0, 0, 1] × [x, 0] and linearized with the
approximations ŭi+1 = v̆i+1 and ŭi−1 = v̆i−1,

nc · ŭi ≤ nc · (p̆i(i−1)/τs − v̆i−1), (7)

where nc = −(p̆(i+1)(i−1) + v̆(i+1)(i−1)τs)
⊥. This constraint

is optional.

C. Collision avoidance (CA) constraints

Each manipulator must avoid colliding with static obsta-
cles, other manipulators and dynamic obstacles. Furthermore,
the motion of each manipulator shall be such that collisions
between the carried object and static and dynamic obstacles
are avoided. Collision-free motion shall be guaranteed for a
maximum time horizon τc 5.

Non-convex collision avoidance constraints are approxi-
mated by three linear constraints, where the first and last
represent avoidance to the right and to the left of the obstacle
and the middle one represents a head-on maneuver which
remains collision-free up to t = τc. Only one of the linear
constraints is selected and added to the convex optimization
as will be discussed in Remark 1.

Constraint 4 (CA manipulator - static obstacle): For ev-
ery manipulator i ∈ M and neighboring obstacle O, the
constraint is given by the future positions in collision with the
manipulator enclosing disk, pi+uit /∈ O⊕D0,ri , ∀t ∈ [0, τc].
Here, ⊕ designates the Minkowski sum. The method permits
arbitrary compact obstacles, but for simplicity we consider O
convex. We approximate the non-convex constraint by three
linear constraints as[

cos(β− + π
2 ), sin(β− + π

2 )
]
· ui ≤ 0,[

cos(β−+β+

2 ), sin(β−+β+

2 )
]
· ui ≤ d̃/τc,[

cos(β+ − π
2 ), sin(β+ − π

2 )
]
· ui ≤ 0,

(8)

where β− and β+ are the angles of the tangents to both sides
of the cone (see Fig. 6-left) and d̃ the projected distance
from pi to the enlarged obstacle O ⊕ D0,ri onto the axis
of the velocity cone. One of the three linear constraints is
selected as will be discussed in Remark 1 and introduced in
the convex optimization.

Boundary wall constraints can be directly added, given by
nwall · ui ≤ d(wall,pi)/τc, with nwall the normal vector to
the wall and d(wall,pi) the distance to it.

Constraint 5 (CA manipulator - manipulator/agent): For
manipulator i ∈M and agent j ∈ A, the constraint is given
by ‖(pi + uit)− (pj + ujt)‖ ≥ ri + rj , for all t ∈ [0, τc].

This constraint is equivalent in form to Constraint 1
and can be approximated by the three linear constraints
equivalent to those of Eq. (4), where ri + rj is substituted
in place of d

¯
j
i − ξi.

For manipulator j ∈M the linear constraint {n ·uij ≤ b}
with maximum constraint satisfaction for the current relative
velocity vij is selected. For the distributed optimization,
both manipulators take equal effort in avoiding the collision,
∆vi = −∆vj = ∆vij/2, leading to

n · uij ≤ b ⇒ n · ui ≤ b/2 + n · (vi + vj)/2. (9)

For agent j ∈ R different options exist to select one of
the three linear constraints, as will be discussed in Remark 1.

5Since the object shape can be modified quickly (10Hz control loop), we
select in our experiments 4 s = τc > τs = 0.5 s.
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Fig. 6. Collision avoidance constraints. Left: In manipulator i’s velocity
space, constraint 4 (grey - infeasible) for avoidance of a rectangular obstacle
and its approximation by three linear constraints (pink - infeasible). Right:
In object’s velocity space, constraint 6 (grey - infeasible) for avoidance of a
rectangular obstacle for a rectangular object with non-zero angular velocity
and its linearization with respect to the current velocity of the object.

For collaborative agents the constraint reduces to Eq. (9) and
for non-collaborative ones to n · ui ≤ b+ n · vj .

Constraint 6 (CA manipulated object): Let uB =∑
i∈M ŭi/m and Bx,θ ⊂ R2 the object B at pB = x and

with orientation θB = θ. For each proximal static obstacle
O, the constraint is given by {uB |O ∩ BpB+uBt,θB+ωBt =
∅, ∀t ∈ [0, τc]}, and for each nearby agent j ∈ A by
{uB |Dpj+vjt,rj ∩ BpB+uBt,θB+ωBt = ∅, ∀t ∈ [0, τc]}.

An example of this constraint for the case of a static
rectangular obstacle and a rotating rectangular object is
shown in Figure 6-right. The constraint is linearized with
respect to the current velocity vB of the object. If C ⊂ R2

denotes the infeasible velocities uB , the idea is as follows:
points of C are obtained by sampling t ∈ [0, τc], the convex
hull of C is then computed, followed by the half-plane
H = {uB |n · uB ≤ b} that satisfies C ∩ H = Ø and
minimizes n · vB − b.

This linear constraint can be added in the centralized
optimization. In the distributed case the hypothesis is made
that the change in velocity of the object equals the change
in velocity of each manipulator6, ∆vi = ∆vB , leading to

n · uB ≤ b ⇒ n · ui ≤ b− n · (vB − vi). (10)

Remark 1 (Linearization of manipulators’ CA constraints):
Constraints 4 and 5 are approximated by three linear
constraints, where only one must be selected. Sensible
choices include: predefined side for avoidance (left or right),
maximize constraint satisfaction with respect to the current
relative velocity [min(n ·(vi−vj)−b)] or with respect to the
preferred velocity [min(n · (ūi − vj) − b)], where vj is the
current velocity of the obstacle. As different linearization
options will lead to different local minima, we opt for the
last option which takes into account the preferred motion
of the manipulated object (recall Sec. IV-A), common to all
manipulators.

D. Arm length constraints

Constraint 7 (Minimum arm length): For each manipula-
tor it is given by ‖p̆i−pi+(ŭi−ui)t‖ ≥ a

¯
, for all t ∈ [0, τs].

Non-convex constraint, linearized like Constraint 1.

6To account for differences in velocity between manipulators, for example
due to a non-zero angular velocity of the object, we do not assume uB = ui.

Constraint 8 (Maximum arm legth): For each manipula-
tor the constraint is given by ‖p̆i − pi + (ŭi − ui)t‖ ≤ ā.

Quadratic constraint, derived like Constraint 2.

E. Algortihm

Algorithm 1 (Centralized optimization): A single convex
optimization, Fig. 4(a), is solved where the new velocity
commands of all manipulators u1:m = [u1, ...,um] and
grippers ŭ1:m = [ŭ1, ..., ŭm] are jointly computed. Force
exchange is not required.

arg min
u1:m,ŭ1:m

C(u1:m, ŭ1:m)

s.t. ||ui|| ≤ umax, ||ŭi|| ≤ umax ∀i ∈M,
linear constraints 1, 3–7,
convex quadratic constraints 2 and 8.

(11)

Here, all constraints are written in their centralized form,
for all neighbors’ edges and all manipulators, resulting in a
4m-dimensional convex optimization.

Algorithm 2 (Distributed optimization): Each manipula-
tor i ∈ M independently solves an optimization, Fig. 4(b),
where its new velocity commands ui and ŭi are computed.
The variable ξi is added to the optimization and represents
the amount the manipulation constraints are relaxed to render
the optimization feasible.

arg min
ui,ŭi,ξi

C(ui, ŭi) + ξi

s.t. ||ui|| ≤ umax, ||ŭi|| ≤ umax,
0 ≤ ξi ≤ umax,
soft linear constraint 1 and 3,
soft convex quadratic constraint 2,
hard linear constraints 4–7,
hard convex quadratic constraint 8,

(12)

Here, all constraints are written in their distributed form
for manipulator i. For fixed ξi, a convex optimization is
obtained. The variable ξi takes the minimum value that
renders the optimization feasible and is obtained through
an iterative search on the parameter ξi, by sequentially
solving a 4-dimensional quadratic optimization with linear
and quadratic constraints.

F. Theoretical guarantees

Assumptions. The following assumptions are made: errors
in sensing of positions, velocities, and forces are negligible;
agents in R maintain a constant velocity during the local
planning interval; and the object maintains a constant angular
velocity and shape for a short time horizon t ≤ τc. These
assumptions are reasonable thanks to the fast replanning
cycle and the short time horizon employed.

Centralized algorithm guarantees. By construction, if
Algorithm 1 is feasible and the assumptions hold, the
commands u1:m guarantee that the shape of the object is
maintained within the limits up to time τs and that the
motions are collision-free up to time τc.

Distributed algorithm guarantees. Collision-free motion
and object shape maintenance can be guaranteed with ad-
ditional assumptions.

If Algorithm 2 is feasible for manipulator i, its motion
(given by ui) is collision-free up to τc. Collision-free motion
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for the object is only guaranteed if the assumptions hold and
if all manipulators select the same side for avoidance (see
Remark 1) with respect to static and dynamic obstacles.

Recall that a conservative hypothesis is made regarding
the velocity change of the other agents’ velocities (∆vi =
∆vij/2 in Sec. IV-B). If ξi = 0, then it is guaranteed that
the object shape remains within its limits, otherwise forces
are transmitted (Sec. III-E.3) and the other manipulators
would react accordingly in the subsequent planning steps to
compensate. Nonetheless, if reaction time is too slow, then
collisions may still arise.

Remark 2 (Infeasibility): If the optimization is infeasible,
not all the constraints can be satisfied and a collision might
be imminent. The robots decrease their speed to guarantee
passive safety.

Remark 3 (Global planning): In both cases, the receding-
horizon nature of the controller results in a lack of long term
guarantees, thus the need for a global algorithm for guidance
and coordination, which replans regularly with a simplified
model of the object.

V. DISCUSSION AND EXPERIMENTAL RESULTS

Data was collected over a total of more than three hours
in a series of experiments involving a variety of deformable
objects: a rope (two robots), a foam mat (two robots), a
queen-size bed sheet (three robots), and a bath towel (three
robots). We kept the manipulators (KUKA youBots) moving
by assigning random goals (position/orientation), at about
one per minute, in a room of dimensions 5.5 m on each
side. For each goal, an approximate trajectory for the object
was obtained via random sampling. In some experiments,
an iRobot Create followed a predictable, pre-programmed
path through the room that was unknown to the robots.
We also introduced a human as a less predictable obstacle.
Since our robots do not currently support force sensing, our
implementation relies on a exchange of virtual forces.

Localization was provided by an external tracking system
and the local motion planner of Section IV computed new
velocity commands for the robots at 10Hz frequency. For
most of the experiments the distributed version was em-
ployed. We collected data on the position and velocity of the
mobile manipulators, dynamic and static obstacles. Examples
are shown in the attached video and in Figs. 1 and 7.

The experimenter manually supplied minimum and maxi-
mum object bounds for each object, from which the robots
automatically computed object limits (Definition 1). The
performance of the robots in maintaining the object within
its limits is given in Figure 8 and Table I. The robots
spend a significant amount of time at the upper bound of
their distance ranges because the transmission of forces is
effective only when the robots are spaced at the bounds.
The addition of virtual spring forces, which can be easily
added, would induce the robots to maintain a preferred
distance within bounds. Distributed local planners violate
the bounds less often – likely because the implementation
is more conservative than for the centralized case. Also
of note are the experiments carrying the foam mat, which

show significantly worse performance than the other objects
- likely due to the strong constraints. Since our robots do not
currently support force sensing, our implementation relies on
velocity control. The velocity controller, implemented with
PID control law, can introduce errors with the stiffer foam
material due to a buildup in the integral term.

For the 117 random goals assigned to the robots; there
were zero failures to converge to the goal. In 35% of trials,
the robots reached the goal and came to a halt. For the
remaining 65% of cases, a new goal was assigned before
the old one could be achieved. However, the system never
became stuck, and it continued to make progress in all cases,
due to the guidance from the global planner.

Collisions during the experiments were minimal. Zero
collisions between the manipulator robots and static obsta-
cles were observed during all experiments. In two cases,
a dynamic obstacle collided transiently with a stationary
manipulator robot. We believe that such collisions could
occur due to unmodeled experimental parameters such as
lag in communicating state information to the robots and to
the system not being able to react fast enough.

We observed that in some situations (for example when
two manipulators held a rope and a dynamic obstacle came
perpendicularly towards its middle point), and especially if
no consistent global plan for the object was available, the
manipulators may disagree on the avoidance side. Stronger
coordination is thus required in those situations.

Fig. 7. Collaborative manipulation of deformable objects. Mobile manip-
ulators carry the object while avoiding static and dynamic obstacles.
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Fig. 8. Histogram of inter-robot distances aggregated and normalized across
all experiments. Each object configuration dictates upper and lower bounds
between pairs of manipulator robots. Each VICON reading at 120 Hz is
reflected in this plot, in which the inter-robot distances are normalized onto
a common range. Here, zero represents the lower bound and one represents
the upper bound. Vertical lines partition the data as indicated in Table I.
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TABLE I
STATISTICS ON EXPERIMENTAL DATA. COLUMNS INDICATE

PERCENTAGE OF TOTAL DISTANCE READINGS WITHIN SPECIFIED SHAPE

BOUNDS; LESS THAN 10% ABOVE UPPER OR BELOW LOWER BOUNDS

(+10% UB AND -10% LB, RESPECTIVELY); AND MORE THAN 10%
ABOVE UPPER OR BELOW LOWER BOUNDS (�UB AND �LB).

Experiments Total � −10% Within +10% �
readings LB LB Bounds UB UB

Rope 63,808 0.0 3.7 78.5 6.1 11.7
Foam mat 114,371 14.2 2.5 56.7 5.5 21.1
Sheet 243,798 0.9 1.2 92.2 2.0 3.6
Towel 1,039,491 0.5 0.4 73.6 23.3 2.1

Centralized 284,649 5.7 1.8 66.5 14.2 11.8
Distributed 1,176,819 0.7 0.6 77.8 18.4 2.5

All exp. 1,461,468 1.7 0.9 75.6 17.6 4.3

Overall, we observed no deadlocks, low collision rates,
and proper shape maintenance, as shown in Table I.

VI. CONCLUSION

In this paper, the problem of multi-robot coordination
for transportation of deformable objects among static and
dynamic obstacles is addressed. A local planner is presented
and successfully tested with a team of mobile manipulators.
Constraints for both collision avoidance and manipulation
are seamlessly integrated in velocity space and a convex
optimization is solved, either centralized or distributed. For
the latter, transmission of forces to the object is integrated
to show motion intent and for coordination.

Regarding future work, more must be done to help ensure
consensus among the manipulators of the global trajectory
for the object. The associated shape bounds could be auto-
matically determined from an object and the dynamics of the
robots and object could be modeled.

The method may apply to manipulators carrying an object
together with a human operator. It would apply without
modifications if the trajectory of the human is known by the
manipulators. If the human operator acts as a leader and has
freedom of movement, the manipulators can move the object
accordingly by minimizing the change in velocity subject to
the shape maintenance and collision avoidance constraints.
This extension has been successfully tested in simulation,
but experimental evaluation is left as future works.

APPENDIX

In practice, ui and ŭi would be commanded to robot i and
f
¯i

measured via force sensors or motor current. In simulation,
the executed velocities are computed by simulating the
deformation of the object subject to the the inputs from all
manipulators, imposing that it stays within its limits and that
the executed velocity of each robot is at most equal to its
commanded one (manipulators can not be pushed directly).

Algorithm 3 (Simulation of object constraints): Given
the input velocities u1:m and ŭ1:m for all manipulators, the
executed velocities v1:m and v̆1:m are given by the following
optimization and the transmitted forces by Eq. (2).

argmin
v1:m,v̆1:m

||v̆1:m − ŭ1:m||2 + ||v1:m − u1:m||2

s.t. min(0, us) ≤ vs ≤ max(0, us)
∀us, vs components of u1:m, v1:m, ŭ1:m, v̆1:m

v1:m, v̆1:m satisfy constraints of Section IV-B
v1:m, v̆1:m satisfy constraints of Section IV-D.

In our setting with virtual forces, at the gripping position
p̆i, the resultant force f

¯i
and moment m

¯ i
are given as

a function of the manipulator exerted forces f̄i and their
position p̆j relative to the object’s center pB ,

f
¯i

=
∑

j∈M−{i}

f̄i , m
¯ i

=
∑

j∈M−{i}

f̄j ·(p̆j−pB)/||p̆j−pB ||.
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