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Abstract— In densely populated-cities, the use of private
cars for personal transportation is unsustainable, due to high
parking and road capacity requirements. The mobility-on-
demand systems have been proposed as an alternative to a
private car. Such systems consist of a fleet of vehicles that
the user of the system can hail for one-way point-to-point
trips. These systems employ large-scale vehicle sharing, i.e.,
one vehicle can be used by several people during one day and
consequently, the fleet size and the parking space requirements
can be reduced, but, at the cost of a non-negligible increase
in vehicles miles driven in the system. The miles driven in the
system can be reduced by ridesharing, where several people
traveling in a similar direction are matched and travel in
one vehicle. We quantify the potential of ridesharing in a
hypothetical mobility-on-demand system designed to serve all
trips that are currently realized by private car in the city
of Prague. Our results show that by employing a ridesharing
strategy that guarantees travel time prolongation of no more
than 10 minutes, the average occupancy of a vehicle will
increase to 2.7 passengers. Consequently, the number of vehicle
miles traveled will decrease to 35 % of the amount in the MoD
system without ridesharing and to 60% of the amount in the
present state.

I. INTRODUCTION

In densely-populated cities, private cars are an unsustain-
able mode of personal transportation. Parking capacity and
road capacity in such environments are typically insufficient
to accommodate the private car traffic. At the same time,
roads and parking space are difficult to expand due to scarcity
of free land. In result, many modern cities are plagued by
congested roads, unavailability of parking, and high levels
of air pollution.

Mobility-on-demand (MoD) systems represent an alter-
native to transportation by private vehicles. In an MoD
system, when a passenger requests a transportation service,
a particular vehicle is assigned to pick up the passenger
and carry him or her to the desired destination, where the
passenger is dropped off. Then, the vehicle is available
again to serve other passengers. When an on-demand vehicle
travels without a passenger, e.g., when it is moving from one
drop-off position to the next pick up position, we say that it
drives unallocated. Examples of on-demand systems include
taxi service, transportation network companies such as Uber,
or future systems of self-driving taxis being developed by
companies such as Waymo, Uber or nuTonomy. The MoD
systems employ massive vehicle sharing, and thus they can
serve the existing transportation demand with smaller highly-
utilized vehicle fleet and in turn, they promise to dramatically
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reduce the need for urban parking capacity. The performance
of large-scale mobility-on-demand systems has been recently
studied within newly developed mathematical models that
indeed confirm the ability to reduce the number of vehicles
in the system [1], [2]. However, they also show that the total
amount of vehicle miles driven in the system is bound to
increase due to unallocated vehicle trips [3]. For example,
the case studies in Singapore [3] and Prague [4] indicate that
unallocated traffic in the MoD system would add more than
30 % to total traffic in the system and subsequently would
contribute to the formation of congestion [4].

A possible solution to the above problem is to implement
large-scale ridesharing, where multiple passengers that travel
in the same direction are matched and transported in one
vehicle. Efficient ridesharing can increase vehicle occupancy
and consequently reduce the required fleet size and the total
amount of vehicle miles driven in the system.

The objective of this paper is to quantify the potential of
ridesharing to reduce vehicular traffic in a large-scale MoD
system. We use agent-based simulation to analyze hypothet-
ical scenario of replacing all privately owned vehicles in the
city of Prague by a) a single-occupancy MoD system and by
b) an MoD system with ridesharing.

A. Related work

The impact of potential large-scale MoD system deploy-
ments have been studied extensively in recent years, both
using simulation [1] and by means of formal mathematical
modeling of such systems [3]. The impact on congestion
arising from unallocated vehicle trips in MoD system has
been numerically explored in [4]. One of the proposed
mitigation is strategies is congestion-aware fleet routing [5].

Ridesharing was traditionally formalized in the framework
of Vehicle Routing Problems (VRP) [6], typically as a spe-
cific variant of VRP with Pickup and Delivery [7] or a Dial
a Ride Problem (DARP) [8].Yet, the existing VRP methods
focus on instances with tens of vehicles and requests [9] and
as such, they are not applicable to management or analysis of
large-scale fleets that often consist of thousands of vehicles
and requests.

The potential for large-scale ridesharing within MoD
systems was studied using the shareability network model
in [10]. This analysis of taxi trips in Manhattan revealed
that up to 80% of the trips could be pairwise shared such
that the travel time is increased be no more than a couple of
minutes. The analysis was later extended to other cities [11].
The assumption of maximum two passengers in a vehicle
was later lifted in [12], where the authors proposed a



technique for dynamic assignment of requests to vehicles in
the fleet and applied the technique to analyze the potential
of ridesharing within NYC taxi dataset. In contrast to the
above work, that analyzed the scenario of replacing all taxis
in Manhattan with a fleet of 3 000 shared taxis, we analyze
the scenario of replacing all private vehicles with a fleet
of 50 000 shared MoD vehicles and specifically study how
would large-scale ridesharing affect the utilization of road
infrastructure.

The city of Prague was chosen for the case study partly
because we have access to the demand model for the area
and partly because it is a ”regular” metropolis that shares
many characteristics with other world cities and thus the
results are more likely to generalize. This is in contrast with
the previously considered urban areas such as Manhattan
or Singapore that have an extremely high density of travel
demand which may lead to overly-optimistic estimates of
system performance.

B. Contribution

Our work extends the existing models of large-scale MoD
systems with consideration for the potential of ridesharing.
More specifically, using agent-based simulation, we quantify
the potential of ridesharing to reduce traffic load and total
vehicle miles traveled. We compare how would be the
existing travel demand served a) in the current system with
private vehicles, b) in the MoD system without ridesharing
and c) in the MoD system with ridesharing. We run high-
fidelity realistic-scale simulation of the three scenarios for
the city of Prague. In particular, we use a) real road network
topology, b) demand with realistic structure and realistic
scale, and c) we simulate the whole lifetime of the vehicle,
including empty trips.

Analyzing of the ridesharing in the context of on-demand
systems is essential because it can answer the question of
whether the MoD system can be, in fact, deployed without
overloading the capacity of existing road infrastructure.

II. BACKGROUND MATERIAL

When analyzing the traffic congestion on a road segment,
the fundamental diagram of road traffic [13] is often used.
This model relates traffic density to traffic flow. Traffic den-
sity is the number of vehicles per unit of distance on the road
segment, while traffic flow is the number of vehicles passing
a reference point per unit of time. When traffic density
grows, traffic flow also increases until it reaches a tipping
point after which the flow starts dropping due to congestion.
The tipping point is known as the critical density [14]. The
exact shape of the diagram is typically determined by fitting
empirical data from real-world observations of vehicular
traffic. Subsequently, we will use the traffic density as a
measure of utilization of a particular road segment and the
critical density value yc = 0.08 vehiclem−1 from [15]. The
road segments with traffic density above critical density yc
will be referred to as congested road segments.

III. METHODOLOGY

In this section, we describe the methodology that allows
us to quantify the potential of large-scale ridesharing in a
hypothetical scenario of replacing all private cars in the city
of Prague by an MoD system.

First, we use a travel demand model to generate a represen-
tative collection of trips that are currently realized by private
cars in Prague during the morning peak. Then, we design
an MoD system that is capable of serving the existing trips
with required service quality. Further, we design a method
that finds request-vehicle matching for ridesharing. Finally,
we simulate the entire system in micro-simulation and gather
data for subsequent analysis. We will now discuss each step
in detail.

A. Input data

The set of trips that represent the transportation demand is
generated by the multi-agent activity-based model of Prague
and Central Bohemian Region [16]. In contrast to traditional
four-step demand models [17], which use trips as the fun-
damental modeling unit, activity-based models employ so-
called activities (e.g., work, shop, sleep) and their sequences
to represent the transport-related behavior of the population.
Travel demand then occurs due to the necessity of the agents
to satisfy their needs through activities performed at different
places at different times. These activities are arranged in
time and space into sequential (daily) schedules. Trip origins,
destinations and times are endogenous outcomes of activity
scheduling. The activity-based approach considers individual
trips in context and therefore allows representing realistic trip
chains.

The model used in this work covers a typical work day
in Prague and the surrounding Central Bohemian Region.
The population of over 1.3 million is modeled by the
same number of autonomous, self-interested agents, whose
behavior is influenced by their sociodemographic attributes,
current needs, and situational context. Individual decisions of
the agents are implemented using machine learning methods
(neural networks, decision trees, random forests, etc.) and
trained using various real-world data sets, including census
data, travel diaries, and other transportation-related surveys.
Planned activity schedules are simulated and tuned, and,
finally, their temporal, spatial, and structural properties are
validated against additional historical real-world data (origin-
destination matrices and surveys) using six-step validation
framework VALFRAM [18], [19]. The model generates over
three million trips by all modes of transport in one 24-hour
scenario, out of which there are roughly one million trips by
private vehicles. For the analysis, we select only the personal
car trips during the morning peak, i.e., such that start between
06:30 and 08:00, which yields a collection of about 130 000
trips.

B. System model

We adopt a station-based design of the MoD system [3].
That is, we partition the city into n = 40 regions using
k-means clustering over the demand data, and we assume



Fig. 1. MoD system stations in the city of Prague. Stations are shown as
circles. Spatial distribution of origins and destinations of travel demands is
depicted using brown dots.

that there is a station at the center of each such region. The
result of this process is shown in Figure 1. The number of
regions was chosen such that the average travel time from a
station to a passenger is below 3 minutes. Stations serve as
temporary parking lots for idle vehicles and they also contain
facilities such as refueling/charging and cleaning.

For simplicity, we assume that each station has suffi-
cient stock of vehicles to cover the transportation demand
originating in its region. Further, we assume that the stock
of vehicles at each station is stabilized through a vehicle
rebalancing process, that is, the stations with a surplus of
idle vehicles continuously send empty vehicles to stations
that have a shortage of idle vehicles. In particular, we use
the rebalancing policy based on the solution of the optimal
transport problem [20] used, e.g., in the Singapore MoD case
study [3].

We experimentally determined that in order to be able
to serve every request from the nearest station (without
ridesharing), the MoD system requires the total of 51 951
vehicles.

The MoD system is modeled as follows. Let V = 1, . . . ,m
be the set of all vehicles in the system. The transportation
requests arriving to the system are represented by a sequence
(t1, o1, d1), (t2, o2, d2), . . . , where ti, oi, and di are the
announcement time, origin point, and destination point of
request i respectively. The i-th transportation request is
revealed only at time ti.

The state of a vehicle v at a particular time point encodes
its current position, the set of requests that are currently on-
board of the vehicle and the current plan of the vehicle. The
plan of a vehicle is represented as a sequence of plan orders
π = z1, z2, . . . , where each order zi is either to pick up a
request r, or to drop-off a request r. For a vehicle plan to
be valid, for each onboard passenger, the plan must contain
an order to drop-off this passenger and for every order to
pickup request r, the plan must contain an order to drop-off
the request r later in the sequence.

The operational cost of vehicle v when following plan π is
denoted sv(π). For simplicity, we define sv(π) to be equal to
the distance driven by the vehicle when it follows plan π. The
travel delay (or discomfort) of request r when the request is

served by vehicle v following plan πv is denoted qr(πv). We
define the travel delay as the difference between the travel
time in a shared vehicle and a travel time along the fastest
route:

qr(πv) := (tdropoff
r − tr)− tbaseline

r ,

where tdropoff
r is the time when the request was dropped

off under plan πv and tbaseline
r is the duration of the fastest

route from pickup point of request r to the drop-off point of
request r.

We desire to minimize the total operational cost of the
system, such that the discomfort of every passenger is
bounded by qmax. That is, we will attempt to minimize∑

v sv(πv) subject to qr(πv(r)) ≤ qmax ∀r, where πv(r)

is the plan of the vehicle that serves the request r.

C. Request-vehicle matching

To implement ridesharing in an MoD system, one has to
determine how should be the arriving travel requests assigned
to individual vehicles in the system such that the overall
distance driven in the system is minimized. This problem
can be mathematically modeled as a dynamic dial-a-ride
problem (D-DARP), which is known to be NP-hard [21].
Despite recent algorithmic advancements [22], [12], [23],
the scalability of exact methods remains limited to prob-
lem instances of moderate size. Therefore, in this work,
we compute distance-minimizing request-vehicle ridesharing
assignments using an Insertion Heuristic [24]. The request-
vehicle matching is implemented as follows:

When a new request r = (t, o, d) arrives, the request-
vehicle matching algorithm attempts to incorporate the re-
quest into the current plan of every vehicle. For a particular
vehicle v, we try all possible points to insert pickup and drop-
off order into existing plan, such that the relative ordering
of the previous orders in the plan remains unchanged.
Further, we measure the increase of operational cost for
each plan generated by this process and select the plan (and
the corresponding vehicle) that minimizes the increase in
operational cost and at the same time satisfies the service
discomfort constraints. The maximum discomfort threshold
qmax is chosen such that, if no other suitable ridesharing
match is found, the request can always be served with delay
smaller than qmax using a vehicle dispatched from the nearest
system station. For the pseudo-code of the request-vehicle
matching method, see Algorithm 1.

In order to evaluate the operational cost and service
discomfort associated with a particular plan, one needs to
estimate the travel time of the vehicle from one order in
the plan (e.g., from pickup position of one request) to the
subsequent order in the plan (e.g., the drop-off position of
some other request). Notice that the number of evaluation
of travel time estimate can be up to the order of O(m · l3).
The fleet size in our case study will be m ≈ 50 000 and
the average length of the plan will be l ≈ 4 resulting
hundreds of thousands of evaluations of the travel time
estimate within single request assignment procedure. In order
to maintain computational tractability, instead of planing the



Algorithm 1: Finding a vehicle and a plan to serve
request r using insertion heuristic.

1 On arrival of new request r
2 for v ∈ V do
3 let πv be the current plan of vehicle v;
4 let l be the length of plan pv;
5 for i ∈ 1, . . . , l + 1 do
6 for j ∈ i+ 1, . . . , l + 2 do
7 π′ ← insert pick-up(r) order before

position i in plan πv;
8 πij

v ← insert drop-off(r) order
before position j in plan π′;

9 v∗, i∗, j∗ ← argmin
v,i,j

sv(π
i,j
v )− sv(πv) subj. to

πi,j
v is valid and
qr(π

ij
v ) ≤ qmax ∀ req. r served by plan πij

v ;

10 request r is assigned to vehicle v∗;
11 vehicle v∗ follows plan pi

∗j∗

v∗ ;

fastest route on the road network, we approximate the travel
time between two locations on the map with a linear model
based on the Euclidean distance between the two points. The
model is calibrated to minimize the difference between the
estimate and the duration of the fastest route in the road
network. Since the road network travel time may be longer
than the estimate, a plan that satisfies discomfort constraints
computed using estimate may violate the constraint when
evaluated using road network travel time. Nevertheless, in
our experiments, we observed that the average road network
travel delay is significantly lower than the maximum delay
constraint.

D. Simulation

The scenarios were simulated in multi-agent transporta-
tion simulation framework AgentPolis1. AgentPolis is a
large-scale multi-agent discrete-event simulation written in
Java. The simulation environment consists of a) road network
that is in turn composed of nodes (crossroads) connected
by edges (road segments), b) stations in which on-demand
vehicles park, c) on-demand vehicle agents, and d) passenger
agents. In Figure 2, we show the city of Prague simulated in
AgentPolis.

The topology of the road network is obtained from Open-
StreetMap (OSM), resulting in a road network consisting of
158 674 edges and 63 995 nodes. The speed limit for each
road segment was also taken from OpenStreetMap data and
missing entries were generated according to following rules
based on the local legislation: highway: 130 km/h, living
street: 20 km/h, otherwise: 50 km/h.

During simulation initialization, we create the vehicles
representing the on-demand fleet and assign them to sta-
tions. For each travel request, at the request announcement

1https://github.com/aicenter/agentpolis

Video: https://sum.fel.cvut.cz/itsc2018/

Fig. 2. AgentPolis visualization of the traffic in Prague at 07:00.

time, we create a passenger agent. The passenger is then
picked up by the assigned on-demand vehicle, driven to the
desired location, dropped off and finally released from the
simulation. The vehicle to serve the passenger is selected
using the request-vehicle matching procedure described in
Section III-C. Note that each passenger can be either matched
to one of the empty vehicles parked in a station or to a non-
idle vehicle that is already on its way to serve previously
assigned requests. After the passenger has been dropped off,
the vehicle continues executing its plan. In the case the plan
of the vehicle becomes empty, the vehicle returns to the
nearest system station.

In this paper, we analyze the system during the morning
peak, i.e., during the period between 7:00 and 8:00. To avoid
the “cold start” artifacts, the simulation begins at 6:30, but for
subsequent analysis, we only use the data generated between
7:00 and 8:00.

IV. RESULTS

In this section, we report on the results of our simulation
analysis. We run the following three scenarios:

1) Present situation scenario: Each travel request is real-
ized by a private vehicle.

2) MoD scenario: Travel demands is served by the MoD
system.

3) MoD with ridesharing scenario: Travel demand
is served by the MoD system with ridesharing.
Request-vehicle matching uses maximum travel delay
qmax = 10min.

Figure 3 shows the distribution of the traffic density over
the road network for the three compared scenarios. We can
see that when the transportation demand is served by an MoD
system without ridesharing, the traffic density at most parts of
the road network increases compared to the present situation.
When the MoD system employs ridesharing, however, the
traffic density at most road segments decreases relative to
both the present situation and to the MoD system without
ridesharing.

Figure 4 shows the histogram of travel densities in the
three scenarios. The first row shows the traffic density
histograms for all edges with non-zero density (used at least



Fig. 3. Comparison of traffic densities over the road network in the three compared scenarios. The darker colors indicate higher traffic density, black
color is reserved for the roads that are congested, i.e., the traffic density exceeds the critical density.

Present MoD MoD with ridesharing
Total veh. dist. traveled (km) 940 645 1 586 495 560 875

Avg. density (veh/km) 0.0080 0.0101 0.0052
Congested segments 14 55 4

Heavily loaded segments 208 551 35

TABLE I
COMPARISON BETWEEN THE THREE CONSIDERED SCENARIOS.

CONGESTED SEGMENTS ARE SEGMENTS ON WHICH TRAFFIC DENSITY IS

ABOVE CRITICAL DENSITY, HEAVILY LOADED SEGMENTS ARE

SEGMENTS WITH DENSITY ABOVE 50% OF THE CRITICAL DENSITY.

once in the analyzed time window) while the second row
shows histograms that are “zoomed-in” to the values around
the critical density. Again, we can see that MoD system with
ridesharing is able to serve the current transportation demand
using less road capacity than the private vehicles use today
and than the on-demand vehicles would use if they do not
employ ridesharing.

Table I summarizes the performance of the three evaluated
systems. It is remarkable that ridesharing can reduce the total
amount of vehicle miles traveled in an MoD system (and thus
also its energy consumption) almost three-fold.

To understand the effectiveness of ridesharing, the vehicle
occupancy is one of the most important indicators. The
occupancy of each non-idle vehicle (i.e., a vehicle that
is not in a station) was measured during the simulation
in one-minute intervals. Figure 5 shows a histogram of
vehicle occupancies measured in period 7:00 - 8:00. The
MoD system with ridesharing has an average occupancy of
2.74 passengers per vehicle. This represents a significant
improvement over the MoD system without ridesharing that
has the average occupancy of 0.7 passengers per vehicle.

In order to get better insights into the relationship between
the travel discomfort and vehicle occupancy, we simulated
MoD system with ridesharing and travel delay constraints
qmax = 7, 10, 12 and 15 minutes. Figure 6 shows the
relation between the maximum delay and the average vehicle
occupation. As expected, the vehicle occupancy can be
increased, and in turn, operation cost reduced if we sacrifice
the comfort of passengers.

V. CONCLUSION

In cities, the private vehicle is becoming an unsustainable
mode of personal transportation due to its significant parking
and road capacity requirements. Mobility-on-Demand (MoD)
systems represent an alternative to transportation by private
vehicles. These systems employ massive vehicle sharing, and
thus they can serve existing transportation demand with a
smaller highly-utilized fleet and in turn drastically reduce
the need for parking capacity. However, studies show that
unallocated trips in such systems would significantly increase
vehicular traffic compared to the present state.

A proposed solution to this problem is to employ large-
scale ridesharing. The potential of this solution strategy
however remained unclear.

In this paper, we quantified the potential of ridesharing
to reduce vehicular traffic in an MoD system. We analyzed
hypothetical scenario of MoD deployment in the city of
Prague and compared performance of three scenarios: a)
the current state, where the demand is served by private
vehicles, b) an MoD system without ridesharing and c) an
MoD system with ridesharing.

The simulation results demonstrate that the MoD systems
with ridesharing can not only compensate for the traffic
generated by the unallocated trips within on-demand sys-
tems, but that ridesharing can significantly improve the road
network utilization even with respect to the present state.
In particular, by employing ridesharing, the average total
traveled distance was reduced to 35% of the distance traveled
in MoD system without ridesharing and to 60% of the
distance traveled by private vehicles in the present state.

In future, we plan to study the applicability of more so-
phisticated request-vehicle matching methods to such large-
scale scenarios and conduct test with more complex conges-
tion models.
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Fig. 4. Histogram of traffic densities in the three different scenarios – from the left: private vehicles, MoD system, and MoD system with ridesharing.
In the second row, only the bins with traffic density above 50% of critical density (0.04 vehiclem−1) are shown to improve readability. Edges with zero
traffic density were discarded from all histograms.

Fig. 5. Vehicle occupancy histogram Fig. 6. The relation between the
max. travel delay in minutes (hor-
izontal axis) and the avg. vehicle
occupancy (vertical axis)

REFERENCES

[1] Daniel J. Fagnant and Kara M. Kockelman. The travel and envi-
ronmental implications of shared autonomous vehicles, using agent-
based model scenarios. Transportation Research Part C: Emerging
Technologies, 40:1–13, March 2014.

[2] L. D Burns, W. C. Jordan, and B. A. Scarborough. Transforming Per-
sonal Mobility. Technical report, Earth Institute, Columbia University,
January 2013.

[3] Kevin Spieser, Kyle Treleaven, Rick Zhang, Emilio Frazzoli, Daniel
Morton, and Marco Pavone. Toward a Systematic Approach to the
Design and Evaluation of Automated Mobility-on-Demand Systems:
A Case Study in Singapore. Road Vehicle Automation (Lecture Notes
in Mobility), April 2014.
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agent-based simulation model of multimodal mobility in european
cities. In International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), pages 229–236. IEEE,
2015.

[17] David A Hensher and Kenneth J Button. Handbook of transport
modelling. Emerald Group Publishing Limited, 2007.
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